Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 May 5;66(6):1807–1820. doi: 10.1086/302951

Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole.

M V Zaragoza 1, U Surti 1, R W Redline 1, E Millie 1, A Chakravarti 1, T J Hassold 1
PMCID: PMC1378061  PMID: 10801385

Abstract

The origin of human triploidy is controversial. Early cytogenetic studies found the majority of cases to be paternal in origin; however, recent molecular analyses have challenged these findings, suggesting that digynic triploidy is the most common source of triploidy. To resolve this dispute, we examined 91 cases of human triploid spontaneous abortions to (1) determine the mechanism of origin of the additional haploid set, and (2) assess the effect of origin on the phenotype of the conceptus. Our results indicate that the majority of cases were diandric in origin because of dispermy, whereas the maternally-derived cases mainly originated through errors in meiosis II. Furthermore, our results indicate a complex relationship between phenotype and parental origin: paternally-derived cases predominate among "typical" spontaneous abortions, whereas maternally-derived cases are associated with either early embryonic demise or with relatively late demise involving a well-formed fetus. As the cytogenetic studies relied on analyses of the former type of material and the molecular studies on the latter sources, the discrepancies between the data sets are explained by differences in ascertainment. In studies correlating the origin of the extra haploid set with histological phenotype, we observed an association between paternal-but not maternal-triploidy and the development of partial hydatidiform moles. However, only a proportion of paternally derived cases developed a partial molar phenotype, indicating that the mere presence of two paternal genomes is not sufficient for molar development.

Full Text

The Full Text of this article is available as a PDF (208.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angell R. R., Sandison A., Bain A. D. Chromosome variation in perinatal mortality: a survey of 500 cases. J Med Genet. 1984 Feb;21(1):39–44. doi: 10.1136/jmg.21.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antonarakis S. E. Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. N Engl J Med. 1991 Mar 28;324(13):872–876. doi: 10.1056/NEJM199103283241302. [DOI] [PubMed] [Google Scholar]
  3. Chakravarti A., Slaugenhaupt S. A. Methods for studying recombination on chromosomes that undergo nondisjunction. Genomics. 1987 Sep;1(1):35–42. doi: 10.1016/0888-7543(87)90102-9. [DOI] [PubMed] [Google Scholar]
  4. Dietzsch E., Ramsay M., Christianson A. L., Henderson B. D., de Ravel T. J. Maternal origin of extra haploid set of chromosomes in third trimester triploid fetuses. Am J Med Genet. 1995 Sep 25;58(4):360–364. doi: 10.1002/ajmg.1320580412. [DOI] [PubMed] [Google Scholar]
  5. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eppig J. J., Schultz R. M., O'Brien M., Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol. 1994 Jul;164(1):1–9. doi: 10.1006/dbio.1994.1175. [DOI] [PubMed] [Google Scholar]
  7. FRENCH F. E., BIERMAN J. M. Probabilities of fetal mortality. Public Health Rep. 1962 Oct;77:835–847. [PMC free article] [PubMed] [Google Scholar]
  8. Funaki K., Mikamo K. Giant diploid oocytes as a cause of digynic triploidy in mammals. Cytogenet Cell Genet. 1980;28(3):158–168. doi: 10.1159/000131526. [DOI] [PubMed] [Google Scholar]
  9. Hassold T., Chen N., Funkhouser J., Jooss T., Manuel B., Matsuura J., Matsuyama A., Wilson C., Yamane J. A., Jacobs P. A. A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet. 1980 Oct;44(Pt 2):151–178. doi: 10.1111/j.1469-1809.1980.tb00955.x. [DOI] [PubMed] [Google Scholar]
  10. Hoffner L., Shen-Schwarz S., Deka R., Chakravarti A., Surti U. Genetics and biology of human ovarian teratomas. III. Cytogenetics and origins of malignant ovarian germ cell tumors. Cancer Genet Cytogenet. 1992 Aug;62(1):58–65. doi: 10.1016/0165-4608(92)90040-f. [DOI] [PubMed] [Google Scholar]
  11. Jacobs P. A., Angell R. R., Buchanan I. M., Hassold T. J., Matsuyama A. M., Manuel B. The origin of human triploids. Ann Hum Genet. 1978 Jul;42(1):49–57. doi: 10.1111/j.1469-1809.1978.tb00930.x. [DOI] [PubMed] [Google Scholar]
  12. Jacobs P. A., Hassold T. J. The origin of numerical chromosome abnormalities. Adv Genet. 1995;33:101–133. doi: 10.1016/s0065-2660(08)60332-6. [DOI] [PubMed] [Google Scholar]
  13. Jacobs P. A., Morton N. E. Origin of human trisomics and polyploids. Hum Hered. 1977;27(1):59–72. doi: 10.1159/000152852. [DOI] [PubMed] [Google Scholar]
  14. Jacobs P. A., Szulman A. E., Funkhouser J., Matsuura J. S., Wilson C. C. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet. 1982 Jul;46(Pt 3):223–231. doi: 10.1111/j.1469-1809.1982.tb00714.x. [DOI] [PubMed] [Google Scholar]
  15. Kajii T., Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977 Aug 18;268(5621):633–634. doi: 10.1038/268633a0. [DOI] [PubMed] [Google Scholar]
  16. Kono T., Obata Y., Yoshimzu T., Nakahara T., Carroll J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet. 1996 May;13(1):91–94. doi: 10.1038/ng0596-91. [DOI] [PubMed] [Google Scholar]
  17. Lane S. A., Taylor G. R., Ozols B., Quirke P. Diagnosis of complete molar pregnancy by microsatellites in archival material. J Clin Pathol. 1993 Apr;46(4):346–348. doi: 10.1136/jcp.46.4.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lawler S. D., Fisher R. A., Dent J. A prospective genetic study of complete and partial hydatidiform moles. Am J Obstet Gynecol. 1991 May;164(5 Pt 1):1270–1277. doi: 10.1016/0002-9378(91)90698-q. [DOI] [PubMed] [Google Scholar]
  19. Lorber B. J., Grantham M., Peters J., Willard H. F., Hassold T. J. Nondisjunction of chromosome 21: comparisons of cytogenetic and molecular studies of the meiotic stage and parent of origin. Am J Hum Genet. 1992 Dec;51(6):1265–1276. [PMC free article] [PubMed] [Google Scholar]
  20. Martin R. H., Spriggs E., Ko E., Rademaker A. W. The relationship between paternal age, sex ratios, and aneuploidy frequencies in human sperm, as assessed by multicolor FISH. Am J Hum Genet. 1995 Dec;57(6):1395–1399. [PMC free article] [PubMed] [Google Scholar]
  21. McFadden D. E., Kwong L. C., Yam I. Y., Langlois S. Parental origin of triploidy in human fetuses: evidence for genomic imprinting. Hum Genet. 1993 Nov;92(5):465–469. doi: 10.1007/BF00216452. [DOI] [PubMed] [Google Scholar]
  22. McFadden D. E., Pantzar J. T. Placental pathology of triploidy. Hum Pathol. 1996 Oct;27(10):1018–1020. doi: 10.1016/s0046-8177(96)90277-4. [DOI] [PubMed] [Google Scholar]
  23. Miny P., Koppers B., Dworniczak B., Bogdanova N., Holzgreve W., Tercanli S., Basaran S., Rehder H., Exeler R., Horst J. Parental origin of the extra haploid chromosome set in triploidies diagnosed prenatally. Am J Med Genet. 1995 May 22;57(1):102–106. doi: 10.1002/ajmg.1320570121. [DOI] [PubMed] [Google Scholar]
  24. Niebuhr E. Triploidy in man. Cytogenetical and clinical aspects. Humangenetik. 1974 Feb 21;21(2):103–125. doi: 10.1007/BF00281030. [DOI] [PubMed] [Google Scholar]
  25. Obata Y., Kaneko-Ishino T., Koide T., Takai Y., Ueda T., Domeki I., Shiroishi T., Ishino F., Kono T. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development. 1998 Apr;125(8):1553–1560. doi: 10.1242/dev.125.8.1553. [DOI] [PubMed] [Google Scholar]
  26. Procter S. E., Gray E. S., Watt J. L. Triploidy, partial mole and dispermy. An investigation of 12 cases. Clin Genet. 1984 Jul;26(1):46–51. doi: 10.1111/j.1399-0004.1984.tb00787.x. [DOI] [PubMed] [Google Scholar]
  27. Redline R. W., Hassold T., Zaragoza M. V. Prevalence of the partial molar phenotype in triploidy of maternal and paternal origin. Hum Pathol. 1998 May;29(5):505–511. doi: 10.1016/s0046-8177(98)90067-3. [DOI] [PubMed] [Google Scholar]
  28. Sherard J., Bean C., Bove B., DelDuca V., Jr, Esterly K. L., Karcsh H. J., Munshi G., Reamer J. F., Suazo G., Wilmoth D. Long survival in a 69,XXY triploid male. Am J Med Genet. 1986 Oct;25(2):307–312. doi: 10.1002/ajmg.1320250216. [DOI] [PubMed] [Google Scholar]
  29. Szulman A. E., Surti U. The syndromes of hydatidiform mole. II. Morphologic evolution of the complete and partial mole. Am J Obstet Gynecol. 1978 Sep 1;132(1):20–27. doi: 10.1016/0002-9378(78)90792-5. [DOI] [PubMed] [Google Scholar]
  30. Uchida I. A., Freeman V. C. Triploidy and chromosomes. Am J Obstet Gynecol. 1985 Jan 1;151(1):65–69. doi: 10.1016/0002-9378(85)90426-0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES