Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jul;65(1):50–58. doi: 10.1086/302446

X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene.

S W Knight 1, N S Heiss 1, T J Vulliamy 1, S Greschner 1, G Stavrides 1, G S Pai 1, G Lestringant 1, N Varma 1, P J Mason 1, I Dokal 1, A Poustka 1
PMCID: PMC1378074  PMID: 10364516

Abstract

Dyskeratosis congenita is a rare inherited bone marrow-failure syndrome characterized by abnormal skin pigmentation, nail dystrophy, and mucosal leukoplakia. More than 80% of patients develop bone-marrow failure, and this is the major cause of premature death. The X-linked form of the disease (MIM 305000) has been shown to be caused by mutations in the DKC1 gene. The gene encodes a 514-amino-acid protein, dyskerin, that is homologous to Saccharomyces cerevisiae Cbf5p and rat Nap57 proteins. By analogy to the homologues in other species, dyskerin is predicted to be a nucleolar protein with a role in both the biogenesis of ribosomes and, in particular, the pseudouridylation of rRNA precursors. We have determined the genomic structure of the DKC1 gene; it consists of 15 exons spanning a region of 15 kb. This has enabled us to screen for mutations in the genomic DNA, by using SSCP analysis. Mutations were detected in 21 of 37 additional families with dyskeratosis congenita that were analyzed. These mutations consisted of 11 different single-nucleotide substitutions, which resulted in 10 missense mutations and 1 putative splicing mutation within an intron. The missense change A353V was observed in 10 different families and was shown to be a recurring de novo event. Two polymorphisms were also detected, one of which resulted in the insertion of an additional lysine in the carboxy-terminal polylysine domain. It is apparent that X-linked dyskeratosis congenita is predominantly caused by missense mutations; the precise effect on the function of dyskerin remains to be determined.

Full Text

The Full Text of this article is available as a PDF (276.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker H. F., Motorin Y., Planta R. J., Grosjean H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 1997 Nov 15;25(22):4493–4499. doi: 10.1093/nar/25.22.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beldjord C., Lapoumeroulie C., Pagnier J., Benabadji M., Krishnamoorthy R., Labie D., Bank A. A novel beta thalassemia gene with a single base mutation in the conserved polypyrimidine sequence at the 3' end of IVS 2. Nucleic Acids Res. 1988 Jun 10;16(11):4927–4935. doi: 10.1093/nar/16.11.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cadwell C., Yoon H. J., Zebarjadian Y., Carbon J. The yeast nucleolar protein Cbf5p is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3. Mol Cell Biol. 1997 Oct;17(10):6175–6183. doi: 10.1128/mcb.17.10.6175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
  5. Connor J. M., Gatherer D., Gray F. C., Pirrit L. A., Affara N. A. Assignment of the gene for dyskeratosis congenita to Xq28. Hum Genet. 1986 Apr;72(4):348–351. doi: 10.1007/BF00290963. [DOI] [PubMed] [Google Scholar]
  6. Coulthard S., Chase A., Pickard J., Goldman J., Dokal I. Chromosomal breakage analysis in dyskeratosis congenita peripheral blood lymphocytes. Br J Haematol. 1998 Sep;102(5):1162–1164. doi: 10.1046/j.1365-2141.1998.00893.x. [DOI] [PubMed] [Google Scholar]
  7. Demiroglŭ H., Alikaşifoğlu M., Dündar S. Dyskeratosis congenita with an unusual chromosomal abnormality. Br J Haematol. 1997 Apr;97(1):243–244. [PubMed] [Google Scholar]
  8. Devriendt K., Matthijs G., Legius E., Schollen E., Blockmans D., van Geet C., Degreef H., Cassiman J. J., Fryns J. P. Skewed X-chromosome inactivation in female carriers of dyskeratosis congenita. Am J Hum Genet. 1997 Mar;60(3):581–587. [PMC free article] [PubMed] [Google Scholar]
  9. Dokal I. Dyskeratosis congenita: an inherited bone marrow failure syndrome. Br J Haematol. 1996 Mar;92(4):775–779. doi: 10.1046/j.1365-2141.1996.355881.x. [DOI] [PubMed] [Google Scholar]
  10. Dokal I., Luzzatto L. Dyskeratosis congenita is a chromosomal instability disorder. Leuk Lymphoma. 1994 Sep;15(1-2):1–7. doi: 10.3109/10428199409051671. [DOI] [PubMed] [Google Scholar]
  11. Drachtman R. A., Alter B. P. Dyskeratosis congenita: clinical and genetic heterogeneity. Report of a new case and review of the literature. Am J Pediatr Hematol Oncol. 1992 Nov;14(4):297–304. [PubMed] [Google Scholar]
  12. Ferraris A. M., Forni G. L., Mangerini R., Gaetani G. F. Nonrandom X-chromosome inactivation in hemopoietic cells from carriers of dyskeratosis congenita. Am J Hum Genet. 1997 Aug;61(2):458–461. doi: 10.1016/S0002-9297(07)64075-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gasparini G., Sambvani N., Guidarelli C., Sarchi G., Di Pietro A., Raimondi E., Romagnoni M. M., Stefanini M. Sindrome di Zinsser-Cole-Engman. A proposito di due casi a trasmissione autosomica dominante. G Ital Dermatol Venereol. 1985 Nov-Dec;120(6):429–433. [PubMed] [Google Scholar]
  14. Heiss N. S., Knight S. W., Vulliamy T. J., Klauck S. M., Wiemann S., Mason P. J., Poustka A., Dokal I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998 May;19(1):32–38. doi: 10.1038/ng0598-32. [DOI] [PubMed] [Google Scholar]
  15. Jiang W., Lim M. Y., Yoon H. J., Thorner J., Martin G. S., Carbon J. Overexpression of the yeast MCK1 protein kinase suppresses conditional mutations in centromere-binding protein genes CBF2 and CBF5. Mol Gen Genet. 1995 Feb 6;246(3):360–366. doi: 10.1007/BF00288609. [DOI] [PubMed] [Google Scholar]
  16. Jiang W., Middleton K., Yoon H. J., Fouquet C., Carbon J. An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol Cell Biol. 1993 Aug;13(8):4884–4893. doi: 10.1128/mcb.13.8.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jouet M., Stewart H., Landy S., Yates J., Yong S. L., Harris A., Garret C., Hatchwell E., Read A., Donnai D. Linkage analysis in 16 families with incontinentia pigmenti. Eur J Hum Genet. 1997 May-Jun;5(3):168–170. [PubMed] [Google Scholar]
  18. Kehrer H., Krone W., Schindler D., Kaufmann R., Schrezenmeier H. Cytogenetic studies of skin fibroblast cultures from a karyotypically normal female with dyskeratosis congenita. Clin Genet. 1992 Mar;41(3):129–134. doi: 10.1111/j.1399-0004.1992.tb03648.x. [DOI] [PubMed] [Google Scholar]
  19. Knight S. W., Vulliamy T. J., Heiss N. S., Matthijs G., Devriendt K., Connor J. M., D'Urso M., Poustka A., Mason P. J., Dokal I. 1.4 Mb candidate gene region for X linked dyskeratosis congenita defined by combined haplotype and X chromosome inactivation analysis. J Med Genet. 1998 Dec;35(12):993–996. doi: 10.1136/jmg.35.12.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knight S., Vulliamy T., Copplestone A., Gluckman E., Mason P., Dokal I. Dyskeratosis Congenita (DC) Registry: identification of new features of DC. Br J Haematol. 1998 Dec;103(4):990–996. doi: 10.1046/j.1365-2141.1998.01103.x. [DOI] [PubMed] [Google Scholar]
  21. Koonin E. V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 1996 Jun 15;24(12):2411–2415. doi: 10.1093/nar/24.12.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lafontaine D. L., Bousquet-Antonelli C., Henry Y., Caizergues-Ferrer M., Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998 Feb 15;12(4):527–537. doi: 10.1101/gad.12.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luzzatto L., Karadimitris A. Dyskeratosis and ribosomal rebellion. Nat Genet. 1998 May;19(1):6–7. doi: 10.1038/ng0598-6. [DOI] [PubMed] [Google Scholar]
  24. Meier U. T., Blobel G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol. 1994 Dec;127(6 Pt 1):1505–1514. doi: 10.1083/jcb.127.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meier U. T., Blobel G. Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell. 1992 Jul 10;70(1):127–138. doi: 10.1016/0092-8674(92)90539-o. [DOI] [PubMed] [Google Scholar]
  26. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murru S., Loudianos G., Deiana M., Camaschella C., Sciarratta G. V., Agosti S., Parodi M. I., Cerruti P., Cao A., Pirastu M. Molecular characterization of beta-thalassemia intermedia in patients of Italian descent and identification of three novel beta-thalassemia mutations. Blood. 1991 Mar 15;77(6):1342–1347. [PubMed] [Google Scholar]
  28. Nurse K., Wrzesinski J., Bakin A., Lane B. G., Ofengand J. Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA. 1995 Mar;1(1):102–112. [PMC free article] [PubMed] [Google Scholar]
  29. Ono M., Kawakami M., Takezawa T. A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res. 1987 Nov 11;15(21):8725–8737. doi: 10.1093/nar/15.21.8725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pai G. S., Yan Y., DeBauche D. M., Stanley W. S., Paul S. R. Bleomycin hypersensitivity in dyskeratosis congenita fibroblasts, lymphocytes, and transformed lymphoblasts. Cytogenet Cell Genet. 1989;52(3-4):186–189. doi: 10.1159/000132874. [DOI] [PubMed] [Google Scholar]
  31. Phillips B., Billin A. N., Cadwell C., Buchholz R., Erickson C., Merriam J. R., Carbon J., Poole S. J. The Nop60B gene of Drosophila encodes an essential nucleolar protein that functions in yeast. Mol Gen Genet. 1998 Oct;260(1):20–29. doi: 10.1007/s004380050866. [DOI] [PubMed] [Google Scholar]
  32. Richards B., Heilig R., Oberlé I., Storjohann L., Horn G. T. Rapid PCR analysis of the St14 (DXS52) VNTR. Nucleic Acids Res. 1991 Apr 25;19(8):1944–1944. doi: 10.1093/nar/19.8.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smahi A., Hyden-Granskog C., Peterlin B., Vabres P., Heuertz S., Fulchignoni-Lataud M. C., Dahl N., Labrune P., Le Marec B., Piussan C. The gene for the familial form of incontinentia pigmenti (IP2) maps to the distal part of Xq28. Hum Mol Genet. 1994 Feb;3(2):273–278. doi: 10.1093/hmg/3.2.273. [DOI] [PubMed] [Google Scholar]
  34. Tee M. K., Lin D., Sugawara T., Holt J. A., Guiguen Y., Buckingham B., Strauss J. F., 3rd, Miller W. L. T-->A transversion 11 bp from a splice acceptor site in the human gene for steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. Hum Mol Genet. 1995 Dec;4(12):2299–2305. doi: 10.1093/hmg/4.12.2299. [DOI] [PubMed] [Google Scholar]
  35. Villard L., Toutain A., Lossi A. M., Gecz J., Houdayer C., Moraine C., Fontès M. Splicing mutation in the ATR-X gene can lead to a dysmorphic mental retardation phenotype without alpha-thalassemia. Am J Hum Genet. 1996 Mar;58(3):499–505. [PMC free article] [PubMed] [Google Scholar]
  36. Vulliamy T. J., Knight S. W., Dokal I., Mason P. J. Skewed X-inactivation in carriers of X-linked dyskeratosis congenita. Blood. 1997 Sep 15;90(6):2213–2216. [PubMed] [Google Scholar]
  37. Winkler A. A., Bobok A., Zonneveld B. J., Steensma H. Y., Hooykaas P. J. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function. Yeast. 1998 Jan 15;14(1):37–48. doi: 10.1002/(SICI)1097-0061(19980115)14:1<37::AID-YEA198>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  38. Zhu Z. B., Hsieh S. L., Bentley D. R., Campbell R. D., Volanakis J. E. A variable number of tandem repeats locus within the human complement C2 gene is associated with a retroposon derived from a human endogenous retrovirus. J Exp Med. 1992 Jun 1;175(6):1783–1787. doi: 10.1084/jem.175.6.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES