Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jul;65(1):68–76. doi: 10.1086/302443

Characterization of a germline mosaicism in families with Lowe syndrome, and identification of seven novel mutations in the OCRL1 gene.

V Satre 1, N Monnier 1, F Berthoin 1, C Ayuso 1, A Joannard 1, P S Jouk 1, I Lopez-Pajares 1, A Megabarne 1, H J Philippe 1, H Plauchu 1, M L Torres 1, J Lunardi 1
PMCID: PMC1378076  PMID: 10364518

Abstract

The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families.

Full Text

The Full Text of this article is available as a PDF (336.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attree O., Olivos I. M., Okabe I., Bailey L. C., Nelson D. L., Lewis R. A., McInnes R. R., Nussbaum R. L. The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature. 1992 Jul 16;358(6383):239–242. doi: 10.1038/358239a0. [DOI] [PubMed] [Google Scholar]
  2. Bakker E., Van Broeckhoven C., Bonten E. J., van de Vooren M. J., Veenema H., Van Hul W., Van Ommen G. J., Vandenberghe A., Pearson P. L. Germline mosaicism and Duchenne muscular dystrophy mutations. Nature. 1987 Oct 8;329(6139):554–556. doi: 10.1038/329554a0. [DOI] [PubMed] [Google Scholar]
  3. Darras B. T., Francke U. A partial deletion of the muscular dystrophy gene transmitted twice by an unaffected male. Nature. 1987 Oct 8;329(6139):556–558. doi: 10.1038/329556a0. [DOI] [PubMed] [Google Scholar]
  4. Drayer A. L., Pesesse X., De Smedt F., Communi D., Moreau C., Erneux C. The family of inositol and phosphatidylinositol polyphosphate 5-phosphatases. Biochem Soc Trans. 1996 Nov;24(4):1001–1005. doi: 10.1042/bst0241001. [DOI] [PubMed] [Google Scholar]
  5. HABIB R., BARGETON E., BRISSAUD H. E., RAYNAUD J., LE BALL J. C. [Anatomical verifications in a child with Lowe's syndrome]. Arch Fr Pediatr. 1962 Aug-Sep;19:945–960. [PubMed] [Google Scholar]
  6. Jeanpierre M. A rapid method for the purification of DNA from blood. Nucleic Acids Res. 1987 Nov 25;15(22):9611–9611. doi: 10.1093/nar/15.22.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jefferson A. B., Majerus P. W. Properties of type II inositol polyphosphate 5-phosphatase. J Biol Chem. 1995 Apr 21;270(16):9370–9377. doi: 10.1074/jbc.270.16.9370. [DOI] [PubMed] [Google Scholar]
  8. Kawano T., Indo Y., Nakazato H., Shimadzu M., Matsuda I. Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes. Am J Med Genet. 1998 Jun 5;77(5):348–355. [PubMed] [Google Scholar]
  9. Kubota T., Sakurai A., Arakawa K., Shimazu M., Wakui K., Furihata K., Fukushima Y. Identification of two novel mutations in the OCRL1 gene in Japanese families with Lowe syndrome. Clin Genet. 1998 Sep;54(3):199–202. doi: 10.1111/j.1399-0004.1998.tb04284.x. [DOI] [PubMed] [Google Scholar]
  10. LOWE C. U., TERREY M., MacLACHLAN E. A. Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. AMA Am J Dis Child. 1952 Feb;83(2):164–184. doi: 10.1001/archpedi.1952.02040060030004. [DOI] [PubMed] [Google Scholar]
  11. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  12. Leahey A. M., Charnas L. R., Nussbaum R. L. Nonsense mutations in the OCRL-1 gene in patients with the oculocerebrorenal syndrome of Lowe. Hum Mol Genet. 1993 Apr;2(4):461–463. doi: 10.1093/hmg/2.4.461. [DOI] [PubMed] [Google Scholar]
  13. Lin T., Orrison B. M., Leahey A. M., Suchy S. F., Bernard D. J., Lewis R. A., Nussbaum R. L. Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am J Hum Genet. 1997 Jun;60(6):1384–1388. doi: 10.1086/515471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin T., Orrison B. M., Suchy S. F., Lewis R. A., Nussbaum R. L. Mutations are not uniformly distributed throughout the OCRL1 gene in Lowe syndrome patients. Mol Genet Metab. 1998 May;64(1):58–61. doi: 10.1006/mgme.1998.2687. [DOI] [PubMed] [Google Scholar]
  15. Murphy E. A., Cramer D. W., Kryscio R. J., Brown C. C., Pierce E. R. Gonadal mosaicism and genetic counseling for X-linked recessive lethals. Am J Hum Genet. 1974 Mar;26(2):207–222. [PMC free article] [PubMed] [Google Scholar]
  16. Nussbaum R. L., Orrison B. M., Jänne P. A., Charnas L., Chinault A. C. Physical mapping and genomic structure of the Lowe syndrome gene OCRL1. Hum Genet. 1997 Feb;99(2):145–150. doi: 10.1007/s004390050329. [DOI] [PubMed] [Google Scholar]
  17. Olivos-Glander I. M., Jänne P. A., Nussbaum R. L. The oculocerebrorenal syndrome gene product is a 105-kD protein localized to the Golgi complex. Am J Hum Genet. 1995 Oct;57(4):817–823. [PMC free article] [PubMed] [Google Scholar]
  18. Silver D. N., Lewis R. A., Nussbaum R. L. Mapping the Lowe oculocerebrorenal syndrome to Xq24-q26 by use of restriction fragment length polymorphisms. J Clin Invest. 1987 Jan;79(1):282–285. doi: 10.1172/JCI112795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suchy S. F., Olivos-Glander I. M., Nussabaum R. L. Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum Mol Genet. 1995 Dec;4(12):2245–2250. doi: 10.1093/hmg/4.12.2245. [DOI] [PubMed] [Google Scholar]
  20. Weissenbach J., Gyapay G., Dib C., Vignal A., Morissette J., Millasseau P., Vaysseix G., Lathrop M. A second-generation linkage map of the human genome. Nature. 1992 Oct 29;359(6398):794–801. doi: 10.1038/359794a0. [DOI] [PubMed] [Google Scholar]
  21. Woscholski R., Parker P. J. Inositol lipid 5-phosphatases--traffic signals and signal traffic. Trends Biochem Sci. 1997 Nov;22(11):427–431. doi: 10.1016/s0968-0004(97)01120-1. [DOI] [PubMed] [Google Scholar]
  22. Zhang X., Hartz P. A., Philip E., Racusen L. C., Majerus P. W. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 1998 Jan 16;273(3):1574–1582. doi: 10.1074/jbc.273.3.1574. [DOI] [PubMed] [Google Scholar]
  23. van Essen A. J., Abbs S., Baiget M., Bakker E., Boileau C., van Broeckhoven C., Bushby K., Clarke A., Claustres M., Covone A. E. Parental origin and germline mosaicism of deletions and duplications of the dystrophin gene: a European study. Hum Genet. 1992 Jan;88(3):249–257. doi: 10.1007/BF00197255. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES