Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jul;65(1):77–87. doi: 10.1086/302463

Structure of the GM2A gene: identification of an exon 2 nonsense mutation and a naturally occurring transcript with an in-frame deletion of exon 2.

B Chen 1, B Rigat 1, C Curry 1, D J Mahuran 1
PMCID: PMC1378077  PMID: 10364519

Abstract

Deficiency of the GM2 activator protein, encoded by GM2A, results in the rare AB-variant form of GM2 gangliosidosis. Four mutations have been identified, but the human gene structure has been only partially characterized. We report a new patient from a Laotian deme whose cells are deficient in both GM2-activator mRNA and protein. However, reverse transcription (RT)-PCR detected some normal-sized cDNA and a smaller cDNA species, which was not seen in the RT-PCR products from normal controls. Sequencing revealed that, although the patient's normal-sized cDNA contained a single nonsense mutation in exon 2, his smaller cDNA was the result of an in-frame deletion of exon 2. Long PCR was used to amplify introns 1 and 2 from patient and normal genomic DNA, and no differences in size, in 5' and 3' end sequences, or in restriction-mapping patterns were observed. From these data we developed a set of four PCR primers that can be used to identify GM2A mutations. We use this procedure to demonstrate that the patient is likely homozygous for the nonsense mutation. Other reports have associated nonsense mutations with dramatically reduced levels of mRNA and with an increased level of skipping of the exon containing the mutation, thus reestablishing an open reading frame. However, a recent article has concluded that, in some cases, the latter observation is caused by an artifact of RT-PCR. In support of this conclusion, we demonstrate that, if the competing, normal-sized cDNA is removed from the initial RT-PCR products, from both patient and normal cells, by an exon 2-specific restriction digest; a second round of PCR produces similar amounts of exon 2-deleted cDNA.

Full Text

The Full Text of this article is available as a PDF (535.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  2. Dietz H. C., Kendzior R. J., Jr Maintenance of an open reading frame as an additional level of scrutiny during splice site selection. Nat Genet. 1994 Oct;8(2):183–188. doi: 10.1038/ng1094-183. [DOI] [PubMed] [Google Scholar]
  3. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  4. Heng H. H., Xie B., Shi X. M., Tsui L. C., Mahuran D. J. Refined mapping of the GM2 activator protein (GM2A) locus to 5q31.3-q33.1, distal to the spinal muscular atrophy locus. Genomics. 1993 Nov;18(2):429–431. doi: 10.1006/geno.1993.1491. [DOI] [PubMed] [Google Scholar]
  5. Kleiman F. E., de Kremer R. D., de Ramirez A. O., Gravel R. A., Argaraña C. E. Sandhoff disease in Argentina: high frequency of a splice site mutation in the HEXB gene and correlation between enzyme and DNA-based tests for heterozygote detection. Hum Genet. 1994 Sep;94(3):279–282. doi: 10.1007/BF00208283. [DOI] [PubMed] [Google Scholar]
  6. Klima H., Tanaka A., Schnabel D., Nakano T., Schröder M., Suzuki K., Sandhoff K. Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein. FEBS Lett. 1991 Sep 9;289(2):260–264. doi: 10.1016/0014-5793(91)81084-l. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Mahuran D. J. The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein. Biochim Biophys Acta. 1998 Jul 31;1393(1):1–18. doi: 10.1016/s0005-2760(98)00057-5. [DOI] [PubMed] [Google Scholar]
  9. Maquat L. E. Defects in RNA splicing and the consequence of shortened translational reading frames. Am J Hum Genet. 1996 Aug;59(2):279–286. [PMC free article] [PubMed] [Google Scholar]
  10. Mazoyer S., Puget N., Perrin-Vidoz L., Lynch H. T., Serova-Sinilnikova O. M., Lenoir G. M. A BRCA1 nonsense mutation causes exon skipping. Am J Hum Genet. 1998 Mar;62(3):713–715. doi: 10.1086/301768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nagarajan S., Chen H. C., Li S. C., Li Y. T., Lockyer J. M. Evidence for two cDNA clones encoding human GM2-activator protein. Biochem J. 1992 Mar 15;282(Pt 3):807–813. doi: 10.1042/bj2820807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neote K., Bapat B., Dumbrille-Ross A., Troxel C., Schuster S. M., Mahuran D. J., Gravel R. A. Characterization of the human HEXB gene encoding lysosomal beta-hexosaminidase. Genomics. 1988 Nov;3(4):279–286. doi: 10.1016/0888-7543(88)90116-4. [DOI] [PubMed] [Google Scholar]
  13. Proia R. L. Gene encoding the human beta-hexosaminidase beta chain: extensive homology of intron placement in the alpha- and beta-chain genes. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1883–1887. doi: 10.1073/pnas.85.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Proia R. L., Soravia E. Organization of the gene encoding the human beta-hexosaminidase alpha-chain. J Biol Chem. 1987 Apr 25;262(12):5677–5681. [PubMed] [Google Scholar]
  15. Ronce N., Moizard M. P., Robb L., Toutain A., Villard L., Moraine C. A C2055T transition in exon 8 of the ATP7A gene is associated with exon skipping in an occipital horn syndrome family. Am J Hum Genet. 1997 Jul;61(1):233–238. doi: 10.1016/S0002-9297(07)64297-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schepers U., Glombitza G., Lemm T., Hoffmann A., Chabas A., Ozand P., Sandhoff K. Molecular analysis of a GM2-activator deficiency in two patients with GM2-gangliosidosis AB variant. Am J Hum Genet. 1996 Nov;59(5):1048–1056. [PMC free article] [PubMed] [Google Scholar]
  18. Schröder M., Schnabel D., Hurwitz R., Young E., Suzuki K., Sandhoff K. Molecular genetics of GM2-gangliosidosis AB variant: a novel mutation and expression in BHK cells. Hum Genet. 1993 Nov;92(5):437–440. doi: 10.1007/BF00216446. [DOI] [PubMed] [Google Scholar]
  19. Schröder M., Schnabel D., Suzuki K., Sandhoff K. A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes GM2-gangliosidosis variant AB. FEBS Lett. 1991 Sep 23;290(1-2):1–3. doi: 10.1016/0014-5793(91)81211-p. [DOI] [PubMed] [Google Scholar]
  20. Swallow D. M., Islam I., Fox M. F., Povey S., Klima H., Schepers U., Sandhoff K. Regional localization of the gene coding for the GM2 activator protein (GM2A) to chromosome 5q32-33 and confirmation of the assignment of GM2AP to chromosome 3. Ann Hum Genet. 1993 Jul;57(Pt 3):187–193. doi: 10.1111/j.1469-1809.1993.tb01594.x. [DOI] [PubMed] [Google Scholar]
  21. Tanaka A., Sakuraba H., Isshiki G., Suzuki K. The major mutation among Japanese patients with infantile Tay-Sachs disease: a G-to-T transversion at the acceptor site of intron 5 of the beta-hexosaminidase alpha gene. Biochem Biophys Res Commun. 1993 Apr 30;192(2):539–546. doi: 10.1006/bbrc.1993.1449. [DOI] [PubMed] [Google Scholar]
  22. Valentine C. R., Heflich R. H. The association of nonsense mutation with exon-skipping in hprt mRNA of Chinese hamster ovary cells results from an artifact of RT-PCR. RNA. 1997 Jun;3(6):660–676. [PMC free article] [PubMed] [Google Scholar]
  23. Xie B., Kennedy J. L., McInnes B., Auger D., Mahuran D. Identification of a processed pseudogene related to the functional gene encoding the GM2 activator protein: localization of the pseudogene to human chromosome 3 and the functional gene to human chromosome 5. Genomics. 1992 Nov;14(3):796–798. doi: 10.1016/s0888-7543(05)80190-9. [DOI] [PubMed] [Google Scholar]
  24. Xie B., McInnes B., Neote K., Lamhonwah A. M., Mahuran D. Isolation and expression of a full-length cDNA encoding the human GM2 activator protein. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1217–1223. doi: 10.1016/0006-291x(91)90671-s. [DOI] [PubMed] [Google Scholar]
  25. Xie B., Wang W., Mahuran D. J. A Cys138-to-Arg substitution in the GM2 activator protein is associated with the AB variant form of GM2 gangliosidosis. Am J Hum Genet. 1992 May;50(5):1046–1052. [PMC free article] [PubMed] [Google Scholar]
  26. Zokaeem G., Bayleran J., Kaplan P., Hechtman P., Neufeld E. F. A shortened beta-hexosaminidase alpha-chain in an Italian patient with infantile Tay-Sachs disease. Am J Hum Genet. 1987 Jun;40(6):537–547. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES