Skip to main content
Gut logoLink to Gut
. 1994 Jan;35(1 Suppl):S46–S51. doi: 10.1136/gut.35.1_suppl.s46

Dietary nucleotides and gut mucosal defence.

G K Grimble 1
PMCID: PMC1378147  PMID: 8125390

Abstract

The informational aspects of nucleic acid synthesis have attracted much more attention than the quantitative significance of DNA, rRNA, tRNA, and nucleotide synthesis. Animal and human studies suggest that in energetic terms, 5-10% of the energy used in synthesising tissue protein is expended in manufacturing an appropriate amount of synthetic machinery, that is the ribosome and tRNA. The two sources for synthesis of nucleotides are salvage of nucleotides released by intracellular degradation or derived from the diet, and nucleotides synthesised de novo from amino acids (for example, glutamine) and sugars (glucose). The comparative importance of these two processes is not well defined, but rRNA production requires a high de novo input in cell types with the capacity for rapid division (for example, lymphocytes). The gut is unusual in requiring a ready arterial supply of nucleotides synthesised by hepatic de novo pathways. Animal studies show that an exogenous supply of nucleotides (salvage) can improve liver regrowth, immune responsiveness to a microbial challenge, and gut morphology in diarrhoea models. Humans adapt to dietary nucleotide intake by downregulating de novo pathways. All total parental nutrition regimens, and most enteral regimens lack nucleotides, which may predispose to an inadequate supply of preformed nucleotides to gut and immune cells in the critically ill, artificially fed patient. Unfortunately, there are no clinical studies that answer this point at present.

Full text

PDF
S46

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adjei A. A., Takamine F., Yokoyama H., Shiokawa K., Matsumoto Y., Asato L., Shinjo S., Imamura T., Yamamoto S. The effects of oral RNA and intraperitoneal nucleoside-nucleotide administration on methicillin-resistant Staphylococcus aureus infection in mice. JPEN J Parenter Enteral Nutr. 1993 Mar-Apr;17(2):148–152. doi: 10.1177/0148607193017002148. [DOI] [PubMed] [Google Scholar]
  2. Aletti M. G., Piccoletti R., Bernelli-Zazzera A. Release of rRNA from liver nuclei during the early stages of the acute-phase reaction. Biochim Biophys Acta. 1984 Nov 22;783(2):179–182. doi: 10.1016/0167-4781(84)90011-3. [DOI] [PubMed] [Google Scholar]
  3. Cooper H. L. Studies on RNA metabolism during lymphocyte activation. Transplant Rev. 1972;11:3–38. doi: 10.1111/j.1600-065x.1972.tb00044.x. [DOI] [PubMed] [Google Scholar]
  4. D'Mello J. P. Utilization of dietary purines and pyrimidines by non-ruminant animals. Proc Nutr Soc. 1982 Sep;41(3):301–308. doi: 10.1079/pns19820045. [DOI] [PubMed] [Google Scholar]
  5. Dudov K. P., Dabeva M. D. Post-transcriptional regulation of ribosome formation in the nucleus of regenerating rat liver. Biochem J. 1983 Jan 15;210(1):183–192. doi: 10.1042/bj2100183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fanslow W. C., Kulkarni A. D., Van Buren C. T., Rudolph F. B. Effect of nucleotide restriction and supplementation on resistance to experimental murine candidiasis. JPEN J Parenter Enteral Nutr. 1988 Jan-Feb;12(1):49–52. doi: 10.1177/014860718801200149. [DOI] [PubMed] [Google Scholar]
  7. Genchev D. D., Kermekchiev M. B., Hadjiolov A. A. Free pyrimidine nucleotide pool of Ehrlich ascites-tumour cells. Compartmentation with respect to the synthesis of heterogeneous nuclear RNA and precursors to ribosomal RNA. Biochem J. 1980 Apr 15;188(1):85–90. doi: 10.1042/bj1880085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghiggeri G. M., Ginevri F., Cercignani G., Oleggini R., Garberi A., Candiano G., Altieri P., Gusmano R. Effect of dietary protein restriction on renal purines and purine-metabolizing enzymes in adriamycin nephrosis in rats: a mechanism for protection against acute proteinuria involving xanthine oxidase inhibition. Clin Sci (Lond) 1990 Dec;79(6):647–656. doi: 10.1042/cs0790647. [DOI] [PubMed] [Google Scholar]
  9. Giesecke D., Tiemeyer W. Availability and metabolism of purines of single-cell proteins in monogastric animals. Proc Nutr Soc. 1982 Sep;41(3):319–327. doi: 10.1079/pns19820047. [DOI] [PubMed] [Google Scholar]
  10. Goody H. E., Ellem K. A. Nutritional effects on precursor uptake and compartmentalization of intracellular pools in relation to RNA synthesis. Biochim Biophys Acta. 1975 Feb 24;383(1):30–39. doi: 10.1016/0005-2787(75)90243-9. [DOI] [PubMed] [Google Scholar]
  11. Greife H. A., Molnar S. 14C-Tracerstudien zum Nukleinsäuren-Stoffwechsel von Jungratten, Küken und Ferkeln. 1. Mitteilung. Untersuchungen zum Purinstoffwechsel der Jungratte. Z Tierphysiol Tierernahr Futtermittelkd. 1983 Jul;50(1-2):79–91. [PubMed] [Google Scholar]
  12. Grimble G. K., Millward D. J. The measurement of ribosomal ribonucleic acid synthesis in rat liver and skeletal muscle in vivo [proceedings]. Biochem Soc Trans. 1977;5(4):913–916. doi: 10.1042/bst0050913. [DOI] [PubMed] [Google Scholar]
  13. Gross C. J., Stiles J. E., Savaiano D. A. Effect of nutritional state and allopurinol on purine metabolism in the rat small intestine. Biochim Biophys Acta. 1988 Jul 14;966(1):168–175. doi: 10.1016/0304-4165(88)90140-7. [DOI] [PubMed] [Google Scholar]
  14. Grummt I., Grummt F. Control of nucleolar RNA synthesis by the intracellular pool sizes of ATP and GTP. Cell. 1976 Mar;7(3):447–453. doi: 10.1016/0092-8674(76)90175-6. [DOI] [PubMed] [Google Scholar]
  15. Grummt I., Smith V. A., Grummt F. Amino acid starvation affects the initiation frequency of nucleolar RNA polymerase. Cell. 1976 Mar;7(3):439–445. doi: 10.1016/0092-8674(76)90174-4. [DOI] [PubMed] [Google Scholar]
  16. Gröbner W., Zöllner N. Der Einfluss von Nahrungspurinen und -pyrimidinen auf die Pyrimidinsynthese des Menschen. Klin Wochenschr. 1983 Dec 1;61(23):1191–1197. doi: 10.1007/BF01537430. [DOI] [PubMed] [Google Scholar]
  17. Heinrich P. C., Castell J. V., Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990 Feb 1;265(3):621–636. doi: 10.1042/bj2650621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hill J. M., Ab G., Malt R. A. Ribonucleic acid labelling and nucleotide pools during compensatory renal hypertrophy. Biochem J. 1974 Dec;144(3):447–453. doi: 10.1042/bj1440447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill J. M. Ribosomal RNA metabolism during renal hypertrophy. Evidence of decreased degradation of newly synthesized ribosomal RNA. J Cell Biol. 1975 Jan;64(1):260–265. doi: 10.1083/jcb.64.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iijima S., Tsujinaka T., Kido Y., Hayashida Y., Ishida H., Homma T., Yokoyama H., Mori T. Intravenous administration of nucleosides and a nucleotide mixture diminishes intestinal mucosal atrophy induced by total parenteral nutrition. JPEN J Parenter Enteral Nutr. 1993 May-Jun;17(3):265–270. doi: 10.1177/0148607193017003265. [DOI] [PubMed] [Google Scholar]
  21. Karagyozov L. K., Stoyanova B. B., Hadjiolov A. A. Effect of cycloheximide on the in vivo and in vitro synthesis of ribosomal RNA in rat liver. Biochim Biophys Acta. 1980 Apr 30;607(2):295–303. doi: 10.1016/0005-2787(80)90082-9. [DOI] [PubMed] [Google Scholar]
  22. Kleuser B., Adam G. Interrelation between cellular rRNA content and regulation of the cell cycle of normal and transformed mouse cell lines. Cell Biol Int Rep. 1985 Nov;9(11):985–992. doi: 10.1016/0309-1651(85)90064-5. [DOI] [PubMed] [Google Scholar]
  23. Kulkarni S. S., Bhateley D. C., Zander A. R., Van Buren C. T., Rudolph F. B., Dicke K. A., Kulkarni A. D. Functional impairment of T-lymphocytes in mouse radiation chimeras by a nucleotide-free diet. Exp Hematol. 1984 Oct;12(9):694–699. [PubMed] [Google Scholar]
  24. Laurent G. J., Sparrow M. P., Millward D. J. Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem J. 1978 Nov 15;176(2):407–417. doi: 10.1042/bj1760407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LeLeiko N. S., Bronstein A. D., Baliga B. S., Munro H. N. De novo purine nucleotide synthesis in the rat small and large intestine: effect of dietary protein and purines. J Pediatr Gastroenterol Nutr. 1983 May;2(2):313–319. [PubMed] [Google Scholar]
  26. Loeb J. N., Yeung L. L. Synthesis and degradation of ribosomal RNA in regenerating liver. J Exp Med. 1975 Sep 1;142(3):575–587. doi: 10.1084/jem.142.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Losman M. J., Harley E. H. Evidence for compartmentation of uridine nucleotide pools in rat hepatoma cells. Biochim Biophys Acta. 1978 Dec 21;521(2):762–769. doi: 10.1016/0005-2787(78)90315-5. [DOI] [PubMed] [Google Scholar]
  28. Löffler W., Gröbner W. A study of dose-response relationships of allopurinol in the presence of low or high purine turnover. Klin Wochenschr. 1988 Feb 15;66(4):153–159. doi: 10.1007/BF01727784. [DOI] [PubMed] [Google Scholar]
  29. Mazlam M. Z., Hodgson H. J. Why measure C reactive protein? Gut. 1994 Jan;35(1):5–7. doi: 10.1136/gut.35.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mercer W. E., Avignolo C., Galanti N., Rose K. M., Hyland J. K., Jacob S. T., Baserga R. Cellular DNA replication is independent of the synthesis or accumulation of ribosomal RNA. Exp Cell Res. 1984 Jan;150(1):118–130. doi: 10.1016/0014-4827(84)90707-9. [DOI] [PubMed] [Google Scholar]
  31. Mezzetti G., Ferrari S., Davalli P., Battini R., Corti A. Peptide chain initiation and analysis of in vitro translation products in rat heart undergoing hypertrophic growth. J Mol Cell Cardiol. 1983 Sep;15(9):629–635. doi: 10.1016/0022-2828(83)90272-9. [DOI] [PubMed] [Google Scholar]
  32. Millward D. J., Garlick P. J., James W. P., Nnanyelugo D. O., Ryatt J. S. Relationship between protein synthesis and RNA content in skeletal muscle. Nature. 1973 Jan 19;241(5386):204–205. doi: 10.1038/241204a0. [DOI] [PubMed] [Google Scholar]
  33. Millward D. J., Garlick P. J., Stewart R. J., Nnanyelugo D. O., Waterlow J. C. Skeletal-muscle growth and protein turnover. Biochem J. 1975 Aug;150(2):235–243. doi: 10.1042/bj1500235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morgan H. E., Siehl D., Chua B. H., Lautensack-Belser N. Faster protein and ribosome synthesis in hypertrophying heart. Basic Res Cardiol. 1985;80 (Suppl 2):115–118. [PubMed] [Google Scholar]
  35. Nikolov E. N., Dabeva M. D., Nikolov T. K. Turnover of ribosomes in regenerating rat liver. Int J Biochem. 1983;15(10):1255–1260. doi: 10.1016/0020-711x(83)90215-x. [DOI] [PubMed] [Google Scholar]
  36. Nuñez M. C., Ayudarte M. V., Morales D., Suarez M. D., Gil A. Effect of dietary nucleotides on intestinal repair in rats with experimental chronic diarrhea. JPEN J Parenter Enteral Nutr. 1990 Nov-Dec;14(6):598–604. doi: 10.1177/0148607190014006598. [DOI] [PubMed] [Google Scholar]
  37. Ogoshi S., Iwasa M., Kitagawa S., Ohmori Y., Mizobuchi S., Iwasa Y., Tamiya T. Effects of total parenteral nutrition with nucleoside and nucleotide mixture on D-galactosamine-induced liver injury in rats. JPEN J Parenter Enteral Nutr. 1988 Jan-Feb;12(1):53–57. doi: 10.1177/014860718801200153. [DOI] [PubMed] [Google Scholar]
  38. Ogoshi S., Iwasa M., Yonezawa T., Tamiya T. Effect of nucleotide and nucleoside mixture on rats given total parenteral nutrition after 70% hepatectomy. JPEN J Parenter Enteral Nutr. 1985 May-Jun;9(3):339–342. doi: 10.1177/0148607185009003339. [DOI] [PubMed] [Google Scholar]
  39. Ouellette A. J., Moonka R., Zelenetz A. D., Malt R. A. Regulation of ribosome synthesis during compensatory renal hypertrophy in mice. Am J Physiol. 1987 Oct;253(4 Pt 1):C506–C513. doi: 10.1152/ajpcell.1987.253.4.C506. [DOI] [PubMed] [Google Scholar]
  40. Ove P., Adams R. L., Abrams R., Lieberman I. Liver uridine triphosphate after partial hepatectomy. Biochim Biophys Acta. 1966 Aug 17;123(2):419–421. doi: 10.1016/0005-2787(66)90294-2. [DOI] [PubMed] [Google Scholar]
  41. Petersson B., Wernerman J., Waller S. O., von der Decken A., Vinnars E. Elective abdominal surgery depresses muscle protein synthesis and increases subjective fatigue: effects lasting more than 30 days. Br J Surg. 1990 Jul;77(7):796–800. doi: 10.1002/bjs.1800770725. [DOI] [PubMed] [Google Scholar]
  42. Piccoletti R., Aletti M. G., Bernelli-Zazzera A. Inflammation-associated events in liver nuclei during acute-phase reaction. Inflammation. 1986 Jun;10(2):109–117. doi: 10.1007/BF00915993. [DOI] [PubMed] [Google Scholar]
  43. Ray A., Aumont M. C., Aussedat J., Bercovici J., Rossi A., Swynghedauw B. Protein and 28S ribosomal RNA fractional turnover rates in the rat heart after abdominal aortic stenosis. Cardiovasc Res. 1987 Aug;21(8):587–592. doi: 10.1093/cvr/21.8.587. [DOI] [PubMed] [Google Scholar]
  44. Rosseneu M., Vercaemst R., Caster H., Lievens M. J., van Tornout P., Herbert P. N. Fluorescence depolarization studies and phase transition in human apoprotein . phospholipid complexes. Eur J Biochem. 1979 May 15;96(2):357–362. doi: 10.1111/j.1432-1033.1979.tb13047.x. [DOI] [PubMed] [Google Scholar]
  45. SCHANKER L. S., JEFFREY J. J., TOCCO D. J. INTERACTION OF PURINES WITH THE PYRIMIDINE TRANSPORT PROCESS OF THE SMALL INTESTINE. Biochem Pharmacol. 1963 Sep;12:1047–1053. doi: 10.1016/0006-2952(63)90028-5. [DOI] [PubMed] [Google Scholar]
  46. Savaiano D. A., Clifford A. J. Adenine, the precursor of nucleic acids in intestinal cells unable to synthesize purines de novo. J Nutr. 1981 Oct;111(10):1816–1822. doi: 10.1093/jn/111.10.1816. [DOI] [PubMed] [Google Scholar]
  47. Savaiano D. A., Ho C. Y., Chu V., Clifford A. J. Metabolism of orally and intravenously administered purines in rats. J Nutr. 1980 Sep;110(9):1793–1804. doi: 10.1093/jn/110.9.1793. [DOI] [PubMed] [Google Scholar]
  48. Scharrer E., Stubenhofer L., Tiemeyer W., Bindl C. Active pyrimidine absorption by chicken colon. Comp Biochem Physiol A Comp Physiol. 1984;77(1):85–88. doi: 10.1016/0300-9629(84)90016-1. [DOI] [PubMed] [Google Scholar]
  49. Seuwen K., Steiner U., Adam G. Cellular content of ribosomal RNA in relation to the progression and competence signals governing proliferation of 3T3 and SV40-3T3 cells. Exp Cell Res. 1984 Sep;154(1):10–24. doi: 10.1016/0014-4827(84)90664-5. [DOI] [PubMed] [Google Scholar]
  50. Sonoda T., Tatibana M. Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochim Biophys Acta. 1978 Nov 21;521(1):55–66. doi: 10.1016/0005-2787(78)90248-4. [DOI] [PubMed] [Google Scholar]
  51. Spence C. A., Hansen-Smith F. M. Comparison of the chemical and biochemical composition of thirteen muscles of the rat after dietary protein restriction. Br J Nutr. 1978 May;39(3):647–658. doi: 10.1079/bjn19780080. [DOI] [PubMed] [Google Scholar]
  52. Szondy Z., Newsholme E. A. The effect of various concentrations of nucleobases, nucleosides or glutamine on the incorporation of [3H]thymidine into DNA in rat mesenteric-lymph-node lymphocytes stimulated by phytohaemagglutinin. Biochem J. 1990 Sep 1;270(2):437–440. doi: 10.1042/bj2700437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tsurugi K., Ogata K. Degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver with and without treatment with a low dose of actinomycin D. Eur J Biochem. 1979 Nov 1;101(1):205–213. doi: 10.1111/j.1432-1033.1979.tb04233.x. [DOI] [PubMed] [Google Scholar]
  54. Uauy R., Stringel G., Thomas R., Quan R. Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. J Pediatr Gastroenterol Nutr. 1990 May;10(4):497–503. doi: 10.1097/00005176-199005000-00014. [DOI] [PubMed] [Google Scholar]
  55. Warner J. R. In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J Mol Biol. 1977 Sep 25;115(3):315–333. doi: 10.1016/0022-2836(77)90157-7. [DOI] [PubMed] [Google Scholar]
  56. Warner J. R. The nucleolus and ribosome formation. Curr Opin Cell Biol. 1990 Jun;2(3):521–527. doi: 10.1016/0955-0674(90)90137-4. [DOI] [PubMed] [Google Scholar]
  57. Wiegers U., Kramer G., Klapproth K., Hilz H. Separate pyrimidine-nucleotide pools for messenger-RNA and ribosomal-RNA synthesis in HeLa S3 cells. Eur J Biochem. 1976 May 1;64(2):535–540. doi: 10.1111/j.1432-1033.1976.tb10333.x. [DOI] [PubMed] [Google Scholar]
  58. Wu G., Greene L. W. Glutamine and glucose metabolism in bovine blood lymphocytes. Comp Biochem Physiol B. 1992 Dec;103(4):821–825. doi: 10.1016/0305-0491(92)90199-2. [DOI] [PubMed] [Google Scholar]
  59. Zöllner N. Purine and pyrimidine metabolism. Proc Nutr Soc. 1982 Sep;41(3):329–342. doi: 10.1079/pns19820048. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES