Skip to main content
Gut logoLink to Gut
. 1990 Feb;31(2):194–197. doi: 10.1136/gut.31.2.194

Development of colonic sodium transport in early childhood and its regulation by aldosterone.

H R Jenkins 1, T R Fenton 1, N McIntosh 1, M J Dillon 1, P J Milla 1
PMCID: PMC1378379  PMID: 2311977

Abstract

Aldosterone is important in the regulation of sodium conservation by both kidney and colon. In the very preterm neonate marked urinary salt wasting occurs because of immature renal tubular function, but little is known of the ontogeny of colonic transport processes. Using an in vivo rectal dialysis technique, we have shown that in the human infant the colon has well developed salt conserving mechanisms from early in the last trimester of gestation and that aldosterone is an important regulatory hormone. Sodium transport mechanisms in the colon appear to develop before those in the kidney and it is possible that the colon is the major organ of sodium conservation in the preterm neonate.

Full text

PDF
194

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Dahhan J., Haycock G. B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch Dis Child. 1983 May;58(5):335–342. doi: 10.1136/adc.58.5.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aperia A., Broberger O., Elinder G., Herin P., Zetterström R. Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand. 1981 Mar;70(2):183–187. doi: 10.1111/j.1651-2227.1981.tb05539.x. [DOI] [PubMed] [Google Scholar]
  3. Aperia A., Broberger O., Thodenius K., Zetterström R. Renal control of sodium and fluid balance in newborn infants during intravenous maintenance therapy. Acta Paediatr Scand. 1975 Sep;64(5):725–731. doi: 10.1111/j.1651-2227.1975.tb03911.x. [DOI] [PubMed] [Google Scholar]
  4. Arant B. S., Jr Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978 May;92(5):705–712. doi: 10.1016/s0022-3476(78)80133-4. [DOI] [PubMed] [Google Scholar]
  5. Bastl C. P., Barnett C. A., Schmidt T. J., Litwack G. Glucocorticoid stimulation of sodium absorption in colon epithelia is mediated by corticosteroid IB receptor. J Biol Chem. 1984 Jan 25;259(2):1186–1195. [PubMed] [Google Scholar]
  6. Binder H. J., White A., Whiting D., Hayslett J. Demonstration of specific high affinity receptors for aldosterone in cytosol of rat colon. Endocrinology. 1986 Feb;118(2):628–631. doi: 10.1210/endo-118-2-628. [DOI] [PubMed] [Google Scholar]
  7. Cremaschi D., Ferguson D. R., Hénin S., James P. S., Meyer G., Smith M. W. Post-natal development of amiloride sensitive sodium transport in pig distal colon. J Physiol. 1979 Jul;292:481–494. doi: 10.1113/jphysiol.1979.sp012866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devroede G. J., Phillips S. F. Conservation of sodium, chloride, and water by the human colon. Gastroenterology. 1969 Jan;56(1):101–109. [PubMed] [Google Scholar]
  9. Dillon M. J., Gillin M. E., Ryness J. M., de Swiet M. Plasma renin activity and aldosterone concentration in the human newborn. Arch Dis Child. 1976 Jul;51(7):537–540. doi: 10.1136/adc.51.7.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dillon M. J., Ryness J. M. Plasma renin activity and aldosterone concentration in children. Br Med J. 1975 Nov 8;4(5992):316–319. doi: 10.1136/bmj.4.5992.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edmonds C. J. Absorption of sodium and water by human rectum measured by a dialysis method. Gut. 1971 May;12(5):356–362. doi: 10.1136/gut.12.5.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferguson D. R., James P. S., Paterson J. Y., Saunders J. C., Smith M. W. Aldosterone induced changes in colonic sodium transport occurring naturally during development in the neonatal pig. J Physiol. 1979 Jul;292:495–504. doi: 10.1113/jphysiol.1979.sp012867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Few J. D., Mangat T. K., Oppe T. E., James V. H. Saliva aldosterone concentration in healthy infants. Arch Dis Child. 1986 May;61(5):508–509. doi: 10.1136/adc.61.5.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Finkel Y., Eklöf A. C., Aperia A. Mechanisms for colonic sodium transport during ontogeny: loss of an amiloride-sensitive sodium pathway. Pediatr Res. 1988 Jul;24(1):46–49. doi: 10.1203/00006450-198807000-00012. [DOI] [PubMed] [Google Scholar]
  15. Frizzell R. A., Koch M. J., Schultz S. G. Ion transport by rabbit colon. I. Active and passive components. J Membr Biol. 1976;27(3):297–316. doi: 10.1007/BF01869142. [DOI] [PubMed] [Google Scholar]
  16. Giller J., Phillips S. F. Electrolyte absorption and secretion in the human colon. Am J Dig Dis. 1972 Nov;17(11):1003–1011. doi: 10.1007/BF02239140. [DOI] [PubMed] [Google Scholar]
  17. Halevy J., Budinger M. E., Hayslett J. P., Binder H. J. Role of aldosterone in the regulation of sodium and chloride transport in the distal colon of sodium-depleted rats. Gastroenterology. 1986 Nov;91(5):1227–1233. doi: 10.1016/s0016-5085(86)80021-x. [DOI] [PubMed] [Google Scholar]
  18. Hawker P. C., Mashiter K. E., Turnberg L. A. Mechanisms of transport of Na, Cl, and K in the human colon. Gastroenterology. 1978 Jun;74(6):1241–1247. [PubMed] [Google Scholar]
  19. Hubel K. A., Renquist K., Shirazi S. Ion transport in human cecum, transverse colon, and sigmoid colon in vitro. Baseline and response to electrical stimulation of intrinsic nerves. Gastroenterology. 1987 Feb;92(2):501–507. doi: 10.1016/0016-5085(87)90148-x. [DOI] [PubMed] [Google Scholar]
  20. LEVITAN R., INGELFINGER F. J. EFFECT OF D-ALDOSTERONE ON SALT AND WATER ABSORPTION FROM THE INTACT HUMAN COLON. J Clin Invest. 1965 May;44:801–808. doi: 10.1172/JCI105192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Milla P. J., Trompeter R., Dillon M. J., Robins D., Shackleton C. Salt-losing syndrome in 2 infants with defective 18-dehydrogenation in aldosterone biosynthesis. Arch Dis Child. 1977 Jul;52(7):580–586. doi: 10.1136/adc.52.7.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robillard J. E., Nakamura K. T., Lawton W. J. Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res. 1985 Oct;19(10):1048–1052. doi: 10.1203/00006450-198510000-00021. [DOI] [PubMed] [Google Scholar]
  23. Sandle G. I., Binder H. J. Corticosteroids and intestinal ion transport. Gastroenterology. 1987 Jul;93(1):188–196. doi: 10.1016/0016-5085(87)90333-7. [DOI] [PubMed] [Google Scholar]
  24. Sandle G. I., Hayslett J. P., Binder H. J. Effect of glucocorticoids on rectal transport in normal subjects and patients with ulcerative colitis. Gut. 1986 Mar;27(3):309–316. doi: 10.1136/gut.27.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Savage M. O., Jefferson I. G., Dillon M. J., Milla P. J., Honour J. W., Grant D. B. Pseudohypoaldosteronism: severe salt wasting in infancy caused by generalized mineralocorticoid unresponsiveness. J Pediatr. 1982 Aug;101(2):239–242. doi: 10.1016/s0022-3476(82)80132-7. [DOI] [PubMed] [Google Scholar]
  26. Sulyok E., Kovács L., Lichardus B., Michajlovskij N., Lehotska V., Némethova V., Varga L., Ertl T. Late hyponatremia in premature infants: role of aldosterone and arginine vasopressin. J Pediatr. 1985 Jun;106(6):990–994. doi: 10.1016/s0022-3476(85)80256-0. [DOI] [PubMed] [Google Scholar]
  27. Sulyok E., Németh M., Tényi I., Csaba I., Györy E., Ertl T., Varga F. Postnatal development of renin-angiotensin-aldosterone system, RAAS, in relation to electrolyte balance in premature infants. Pediatr Res. 1979 Jul;13(7):817–820. doi: 10.1203/00006450-197907000-00005. [DOI] [PubMed] [Google Scholar]
  28. Thomas S., Murphy J. F., Dyas J., Ryalls M., Hughes I. A. Response to ACTH in the newborn. Arch Dis Child. 1986 Jan;61(1):57–60. doi: 10.1136/adc.61.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES