Skip to main content
Gut logoLink to Gut
. 1990 Aug;31(8):890–895. doi: 10.1136/gut.31.8.890

Binding of proteolytically-degraded human colonic mucin glycoproteins to the Gal/GalNAc adherence lectin of Entamoeba histolytica.

K Chadee 1, C Ndarathi 1, K Keller 1
PMCID: PMC1378617  PMID: 2201583

Abstract

Rat and human colonic mucin glycoproteins bind to the Gal/GalNAc adherence lectin on the surface of Entamoeba histolytica in vitro, thus inhibiting the organism from adhering to and lysing the target cells. Human colonic mucin glycoproteins were isolated by Sepharose 4B gel filtration chromatography, they were proteolytically degraded with trypsin, pronase, and papain, and the glycoprotein fractions were reisolated by Sephacryl S-200 gel filtration chromatography. Binding of the mucin glycoprotein fractions to amoebae was quantitated by the inhibition of adherence of Chinese hamster ovary cells to the surface of the amoebae. Trypsin and papain digests caused 40 and 20% reductions, respectively, in the excluded fractions (void volume) that contained all the carbohydrates; pronase digests resulted in extensive degradation of the mucin glycoprotein with the carbohydrate fractions eluting over 40% of the gel bed volume. 3H-labelled mucin glycoprotein and sodium dodecylsulfate-polyacrylamide gel electrophoresis confirmed the presence of the high molecular weight carbohydrate-rich glycoproteins with no subunits in the excluded fractions and the absence of sugars in the included peptides. Only the high molecular weight carbohydrate-containing fractions bind amoebae and inhibit amoebic adherence to Chinese hamster ovary cells. The trypsin digested mucins in the excluded volume were more efficient than the native undigested mucins in binding amoebae. The carbohydrate-containing fractions of the pronase digests were the least effective in binding amoebae and inhibiting adherence of Chinese hamster ovary cells. This suggests that proteolytically-degraded colonic mucins that are glycosylated, as well as the undegraded native mucin glycoproteins of the gut, may play a protective role in binding to amoebae, thus preventing contact of amoebae with mucosal epithelial cells and potential invasion.

Full text

PDF
890

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Bell A., Mantle M., Pearson J. P. The structure and physiology of gastrointestinal mucus. Adv Exp Med Biol. 1982;144:115–133. doi: 10.1007/978-1-4615-9254-9_15. [DOI] [PubMed] [Google Scholar]
  2. Boland C. R., Montgomery C. K., Kim Y. S. Alterations in human colonic mucin occurring with cellular differentiation and malignant transformation. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2051–2055. doi: 10.1073/pnas.79.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chadee K., Johnson M. L., Orozco E., Petri W. A., Jr, Ravdin J. I. Binding and internalization of rat colonic mucins by the galactose/N-acetyl-D-galactosamine adherence lectin of Entamoeba histolytica. J Infect Dis. 1988 Aug;158(2):398–406. doi: 10.1093/infdis/158.2.398. [DOI] [PubMed] [Google Scholar]
  5. Chadee K., Meerovitch E. Entamoeba histolytica: early progressive pathology in the cecum of the gerbil (Meriones unguiculatus). Am J Trop Med Hyg. 1985 Mar;34(2):283–291. doi: 10.4269/ajtmh.1985.34.283. [DOI] [PubMed] [Google Scholar]
  6. Chadee K., Meerovitch E. The pathology of experimentally induced cecal amebiasis in gerbils (Meriones unguiculatus). Liver changes and amebic liver abscess formation. Am J Pathol. 1985 Jun;119(3):485–494. [PMC free article] [PubMed] [Google Scholar]
  7. Chadee K., Petri W. A., Jr, Innes D. J., Ravdin J. I. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest. 1987 Nov;80(5):1245–1254. doi: 10.1172/JCI113199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crowther R. S., Roomi N. W., Fahim R. E., Forstner J. F. Vibrio cholerae metalloproteinase degrades intestinal mucin and facilitates enterotoxin-induced secretion from rat intestine. Biochim Biophys Acta. 1987 Jun 22;924(3):393–402. doi: 10.1016/0304-4165(87)90153-x. [DOI] [PubMed] [Google Scholar]
  9. Filipe M. I., Branfoot A. C. Abnormal patterns of mucus secretion in apparently normal mucosa of large intestine with carcinoma. Cancer. 1974 Aug;34(2):282–290. doi: 10.1002/1097-0142(197408)34:2<282::aid-cncr2820340211>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  10. Gold D. V., Miller F. Comparison of human colonic mucoprotein antigen from normal and neoplastic mucosa. Cancer Res. 1978 Oct;38(10):3204–3211. [PubMed] [Google Scholar]
  11. Gold D. V., Shochat D., Miller F. Protease digestion of colonic mucin. Evidence for the existence of two immunochemically distinct mucins. J Biol Chem. 1981 Jun 25;256(12):6354–6358. [PubMed] [Google Scholar]
  12. Hoskins L. C., Agustines M., McKee W. B., Boulding E. T., Kriaris M., Niedermeyer G. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest. 1985 Mar;75(3):944–953. doi: 10.1172/JCI111795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobs L. R., Huber P. W. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel diseases. J Clin Invest. 1985 Jan;75(1):112–118. doi: 10.1172/JCI111662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Listinsky C. M., Riddell R. H. Patterns of mucin secretion in neoplastic and non-neoplastic diseases of the colon. Hum Pathol. 1981 Oct;12(10):923–929. doi: 10.1016/s0046-8177(81)80198-0. [DOI] [PubMed] [Google Scholar]
  15. Mantle M., Forstner G. G., Forstner J. F. Antigenic and structural features of goblet-cell mucin of human small intestine. Biochem J. 1984 Jan 1;217(1):159–167. doi: 10.1042/bj2170159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mantle M., Forstner G. G., Forstner J. F. Biochemical characterization of the component parts of intestinal mucin from patients with cystic fibrosis. Biochem J. 1984 Dec 1;224(2):345–354. doi: 10.1042/bj2240345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marshall T., Allen A. The isolation and characterization of the high-molecular-weight glycoprotein from pig colonic mucus. Biochem J. 1978 Aug 1;173(2):569–578. doi: 10.1042/bj1730569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nunes-Edwards P. L., Thiermann A. B., Bassford P. J., Jr, Stamm L. V. Identification and characterization of the protein antigens of Leptospira interrogans serovar hardjo. Infect Immun. 1985 May;48(2):492–497. doi: 10.1128/iai.48.2.492-497.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pearson J. P., Allen A., Parry S. A 70000-molecular-weight protein isolated from purified pig gastric mucus glycoprotein by reduction of disulphide bridges and its implication in the polymeric structure. Biochem J. 1981 Jul 1;197(1):155–162. doi: 10.1042/bj1970155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Petri W. A., Jr, Smith R. D., Schlesinger P. H., Murphy C. F., Ravdin J. I. Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica. J Clin Invest. 1987 Nov;80(5):1238–1244. doi: 10.1172/JCI113198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pittman F. E., el-Hashimi W. K., Pittman J. C. Studies of human amebiasis. II. Light and electron-microscopic observations of colonic mucosa and exudate in acute amebic colitis. Gastroenterology. 1973 Oct;65(4):588–603. [PubMed] [Google Scholar]
  22. Podolsky D. K., Isselbacher K. J. Composition of human colonic mucin. Selective alteration in inflammatory bowel disease. J Clin Invest. 1983 Jul;72(1):142–153. doi: 10.1172/JCI110952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Podolsky D. K., Isselbacher K. J. Glycoprotein composition of colonic mucosa. Specific alterations in ulcerative colitis. Gastroenterology. 1984 Nov;87(5):991–998. [PubMed] [Google Scholar]
  24. Prathap K., Gilman R. The histopathology of acute intestinal amebiasis. A rectal biopsy study. Am J Pathol. 1970 Aug;60(2):229–246. [PMC free article] [PubMed] [Google Scholar]
  25. Prizont R., Konigsberg N. Identification of bacterial glycosidases in rat cecal contents. Dig Dis Sci. 1981 Sep;26(9):773–777. doi: 10.1007/BF01309607. [DOI] [PubMed] [Google Scholar]
  26. Ravdin J. I., Guerrant R. L. Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. J Clin Invest. 1981 Nov;68(5):1305–1313. doi: 10.1172/JCI110377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Udezulu I. A., Leitch G. J. A membrane-associated neuraminidase in Entamoeba histolytica trophozoites. Infect Immun. 1987 Jan;55(1):181–186. doi: 10.1128/iai.55.1.181-186.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walsh J. A. Problems in recognition and diagnosis of amebiasis: estimation of the global magnitude of morbidity and mortality. Rev Infect Dis. 1986 Mar-Apr;8(2):228–238. doi: 10.1093/clinids/8.2.228. [DOI] [PubMed] [Google Scholar]
  29. Wesley A., Mantle M., Man D., Qureshi R., Forstner G., Forstner J. Neutral and acidic species of human intestinal mucin. Evidence for different core peptides. J Biol Chem. 1985 Jul 5;260(13):7955–7959. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES