Skip to main content
Gut logoLink to Gut
. 1990 Dec;31(12):1358–1364. doi: 10.1136/gut.31.12.1358

Experimental non-steroidal anti-inflammatory drug-induced enteropathy in the rat: similarities to inflammatory bowel disease and effect of thromboxane synthetase inhibitors.

A K Banerjee 1, T J Peters 1
PMCID: PMC1378757  PMID: 1979954

Abstract

We have validated an established animal model of acute inflammatory bowel disease in indomethacin-treated rats. Studies in both in vitro and in vivo 51chromium-labelled ethylenediamine tetra-acetate (51Cr-EDTA) permeability and tissue myeloperoxidase activity, a marker of inflammatory cell invasion, showed increased permeability and enzyme levels, respectively, in treated animals compared to controls (in vitro 51Cr-EDTA permeability: (mean (SE] control 0.10 (0.02) microliter/mg per tissue, experimental 0.17 (0.02) (p < 0.01, 2 way analysis of variance); in vivo 51Cr-EDTA permeability: control 3.9 (1.3) (% dose recovered), experimental 12.1 (1.5) (p < 0.01); tissue myeloperoxidase: control 10.8 (0.4) mU/mg, experimental 17.2 (0.5) p less than 0.01). Pretreatment or simultaneous treatment of indomethacin-treated animals with glucocorticoids, sulphasalazine, or tetracycline reduced the permeability changes and the tissue inflammatory response (in vitro 51Cr-EDTA permeability: (mean (SE] sulphasalazine + indomethacin 0.11 (0.2) microliter/mg tissue (p < 0.01), prednisolone +/- indomethacin 0.12 (0.02) (p < 0.01), tetracycline + indomethacin 0.12 (0.02) (p < 0.01]. Glucocorticoids and sulphasalazine, but not tetracycline, administered after the indomethacin also partially corrected the permeability and inflammatory changes induced by indomethacin (in vitro 51Cr-EDTA permeability: sulphasalazine 0.15 (0.02) microliter/mg, p < 0.02; prednisolone 0.12 (0.02) microliter/mg, p < 0.01). This approach was used to investigate the effects of two different thromboxane synthetase inhibitors in indomethacin-treated animals. Simultaneous treatment with thromboxane synthetase inhibitors and indomethacin prevented the 51Cr-EDTA permeability and tissue myeloperoxidase increases induced by indomethacin alone (in vitro 51Cr-EDTA permeability: thromboxane synthetase inhibitors + indomethacin 0.11 (0.01) microliter/mg (p0.01); tissue myeloperoxidase: 11 (0.4) mU/mg, (p < 0.01). Thromboxane synthetase inhibitors administered after the indomethacin also partially corrected the permeability and inflammatory changes induced by indomethacin (in vitro 51Cr-EDTA permeability: thromboxane synthetase inhibitors 0.12 (0.02) mU/mg (p < 0.01); tissue myeloperoxidase 13.8 (0.5) (p < 0.01). These studies indicate that thromboxane synthetase inhibitors partially correct the intestinal lesion non-steroidal anti-inflammatory drug enteropathy and may therefore be of use in inflammatory bowel diseases in humans.

Full text

PDF
1358

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A. K., Peters T. J. Crohn's or poisoning? Gut. 1988 Aug;29(8):1152–1152. doi: 10.1136/gut.29.8.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bjarnason I., O'Morain C., Levi A. J., Peters T. J. Absorption of 51chromium-labeled ethylenediaminetetraacetate in inflammatory bowel disease. Gastroenterology. 1983 Aug;85(2):318–322. [PubMed] [Google Scholar]
  3. Bjarnason I., Peters J. Helping the mucosa make sense of macromolecules. Gut. 1987 Sep;28(9):1057–1061. doi: 10.1136/gut.28.9.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bjarnason I., Peters T. J. In vitro determination of small intestinal permeability: demonstration of a persistent defect in patients with coeliac disease. Gut. 1984 Feb;25(2):145–150. doi: 10.1136/gut.25.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bjarnason I., Peters T. J., Wise R. J. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet. 1984 Jan 28;1(8370):179–182. doi: 10.1016/s0140-6736(84)92109-3. [DOI] [PubMed] [Google Scholar]
  6. Bjarnason I., Smethurst P., Levi A. J., Peters T. J. Intestinal permeability to 51Cr-EDTA in rats with experimentally induced enteropathy. Gut. 1985 Jun;26(6):579–585. doi: 10.1136/gut.26.6.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bjarnason I., Zanelli G., Smith T., Prouse P., Williams P., Smethurst P., Delacey G., Gumpel M. J., Levi A. J. Nonsteroidal antiinflammatory drug-induced intestinal inflammation in humans. Gastroenterology. 1987 Sep;93(3):480–489. doi: 10.1016/0016-5085(87)90909-7. [DOI] [PubMed] [Google Scholar]
  8. Boughton-Smith N. K., Whittle B. J. Increased metabolism of arachidonic acid in an immune model of colitis in guinea-pigs. Br J Pharmacol. 1985 Oct;86(2):439–446. doi: 10.1111/j.1476-5381.1985.tb08913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bradley P. P., Christensen R. D., Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood. 1982 Sep;60(3):618–622. [PubMed] [Google Scholar]
  10. Cronquist A. G., Mackenzie J., Smith T. A high resolution bulk-sample counter with variable geometry. Int J Appl Radiat Isot. 1975 Feb;26(2):89–91. doi: 10.1016/0020-708x(75)90108-8. [DOI] [PubMed] [Google Scholar]
  11. Cross P. E., Dickinson R. P., Parry M. J., Randall M. J. Selective thromboxane synthetase inhibitors. 2. 3-(1H-imidazol-1-ylmethyl)-2-methyl-1H-indole-1-propanoic acid and analogues. J Med Chem. 1986 Mar;29(3):342–346. doi: 10.1021/jm00153a007. [DOI] [PubMed] [Google Scholar]
  12. Fang W. F., Broughton A., Jacobson E. D. Indomethacin-induced intestinal inflammation. Am J Dig Dis. 1977 Sep;22(9):749–760. doi: 10.1007/BF01694504. [DOI] [PubMed] [Google Scholar]
  13. Hawkey C. J., Boughton-Smith N. K., Whittle B. J. Modulation of human colonic arachidonic acid metabolism by sulfasalazine. Dig Dis Sci. 1985 Dec;30(12):1161–1165. doi: 10.1007/BF01314051. [DOI] [PubMed] [Google Scholar]
  14. Hollander D., Vadheim C. M., Brettholz E., Petersen G. M., Delahunty T., Rotter J. I. Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann Intern Med. 1986 Dec;105(6):883–885. doi: 10.7326/0003-4819-105-6-883. [DOI] [PubMed] [Google Scholar]
  15. Kane S. P., Vincenti A. C. Mucosal enzymes in human inflammatory bowel disease with reference to neutrophil granulocytes as mediators of tissue injury. Clin Sci (Lond) 1979 Oct;57(4):295–303. doi: 10.1042/cs0570295. [DOI] [PubMed] [Google Scholar]
  16. Kent T. H., Cardelli R. M., Stamler F. W. Small intestinal ulcers and intestinal flora in rats given indomethacin. Am J Pathol. 1969 Feb;54(2):237–249. [PMC free article] [PubMed] [Google Scholar]
  17. Ligumsky M., Karmeli F., Sharon P., Zor U., Cohen F., Rachmilewitz D. Enhanced thromboxane A2 and prostacyclin production by cultured rectal mucosa in ulcerative colitis and its inhibition by steroids and sulfasalazine. Gastroenterology. 1981 Sep;81(3):444–449. [PubMed] [Google Scholar]
  18. Mitchell D. N., Rees R. J. Agent transmissible from Crohn's disease tissue. Lancet. 1970 Jul 25;2(7665):168–171. doi: 10.1016/s0140-6736(70)92532-8. [DOI] [PubMed] [Google Scholar]
  19. Sharon P., Stenson W. F. Metabolism of arachidonic acid in acetic acid colitis in rats. Similarity to human inflammatory bowel disease. Gastroenterology. 1985 Jan;88(1 Pt 1):55–63. doi: 10.1016/s0016-5085(85)80132-3. [DOI] [PubMed] [Google Scholar]
  20. Wakefield A. J., Sawyerr A. M., Dhillon A. P., Pittilo R. M., Rowles P. M., Lewis A. A., Pounder R. E. Pathogenesis of Crohn's disease: multifocal gastrointestinal infarction. Lancet. 1989 Nov 4;2(8671):1057–1062. doi: 10.1016/s0140-6736(89)91078-7. [DOI] [PubMed] [Google Scholar]
  21. Whittle B. J. Temporal relationship between cyclooxygenase inhibition, as measured by prostacyclin biosynthesis, and the gastrointestinal damage induced by indomethacin in the rat. Gastroenterology. 1981 Jan;80(1):94–98. [PubMed] [Google Scholar]
  22. Whittle B. J. Temporal relationship between cyclooxygenase inhibition, as measured by prostacyclin biosynthesis, and the gastrointestinal damage induced by indomethacin in the rat. Gastroenterology. 1981 Jan;80(1):94–98. [PubMed] [Google Scholar]
  23. Williams J. G., Hallett M. B. The reaction of 5-amino-salicylic acid with hypochlorite. Implications for its mode of action in inflammatory bowel disease. Biochem Pharmacol. 1989 Jan 1;38(1):149–154. doi: 10.1016/0006-2952(89)90161-5. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES