Skip to main content
Gut logoLink to Gut
. 1991 Apr;32(4):399–402. doi: 10.1136/gut.32.4.399

Superoxide production by Crohn's disease neutrophils.

F T Curran 1, R N Allan 1, M R Keighley 1
PMCID: PMC1379079  PMID: 1851125

Abstract

Neutrophil superoxide anion production was measured in healthy subjects and in patients with quiescent and active Crohn's disease using superoxide dismutase inhibitable cytochrome C reduction. Three stimuli were used: phorbol 12-myristate 13-acetate (PMA1), phorbol 20-oxo-20-deoxy 12-myristate 13-acetate (PMA2), and Candida albicans in serum. Normal neutrophils produced significantly more superoxide anion than Crohn's disease neutrophils with both PMA1 (mean (SD) 9.6 (2.2) v 8.6 (1.8) nmol/10(6) cells/5 minutes, p = 0.04) and PMA2 (1.8 (0.8) v 0.8 (0.77) nmol/10(6) cells/5 minutes, p = 0.00004). With C albicans in serum, normal and Crohn's disease neutrophils produced similar amounts of superoxide anion (4.4 (1.5) v 4.3 (1.7) nmol/10(6) cells/30 minutes, not significant). Results were independent of disease activity. Superoxide anion production by PMA-stimulated Crohn's disease neutrophils is significantly lower than by normal neutrophils.

Full text

PDF
399

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  3. Badwey J. A., Karnovsky M. L. Production of superoxide by phagocytic leukocytes: a paradigm for stimulus-response phenomena. Curr Top Cell Regul. 1986;28:183–208. doi: 10.1016/b978-0-12-152828-7.50006-8. [DOI] [PubMed] [Google Scholar]
  4. Curran F. T., Youngs D. J., Allan R. N., Keighley M. R. Candidacidal activity of Crohn's disease neutrophils. Gut. 1991 Jan;32(1):55–60. doi: 10.1136/gut.32.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeChatelet L. R., Shirley P. S., Johnston R. B., Jr Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood. 1976 Apr;47(4):545–554. [PubMed] [Google Scholar]
  6. Fantone J. C., Ward P. A. Polymorphonuclear leukocyte-mediated cell and tissue injury: oxygen metabolites and their relations to human disease. Hum Pathol. 1985 Oct;16(10):973–978. doi: 10.1016/s0046-8177(85)80273-2. [DOI] [PubMed] [Google Scholar]
  7. Giddings J. C., Piovella F., Ricetti M., Jarvis A., Peake I. R., Bloom A. L. Characterization of procoagulant activity produced by cultures of human monocytes and lymphocytes separated in colloidal silica-polvinylpyrrolidone gradients. Clin Lab Haematol. 1980;2(2):121–128. doi: 10.1111/j.1365-2257.1980.tb00815.x. [DOI] [PubMed] [Google Scholar]
  8. Harvey R. F., Bradshaw J. M. A simple index of Crohn's-disease activity. Lancet. 1980 Mar 8;1(8167):514–514. doi: 10.1016/s0140-6736(80)92767-1. [DOI] [PubMed] [Google Scholar]
  9. Hill G. L., Blackett R. L., Pickford I. R., Bradley J. A. A survey of protein nutrition in patients with inflammatory bowel disease--a rational basis for nutritional therapy. Br J Surg. 1977 Dec;64(12):894–896. doi: 10.1002/bjs.1800641216. [DOI] [PubMed] [Google Scholar]
  10. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jepsen L. V., Skottun T. A rapid one-step method for the isolation of human granulocytes from whole blood. Scand J Clin Lab Invest. 1982 May;42(3):235–238. [PubMed] [Google Scholar]
  12. Karnovsky M. L. The metabolism of leukocytes. Semin Hematol. 1968 Apr;5(2):156–165. [PubMed] [Google Scholar]
  13. Klebanoff S. J. Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med. 1980 Sep;93(3):480–489. doi: 10.7326/0003-4819-93-3-480. [DOI] [PubMed] [Google Scholar]
  14. Larrocha C., Fernández de Castro M., Fontan G., Viloria A., Fernández-Chacón J. L., Jiménez C. Hereditary myeloperoxidase deficiency: study of 12 cases. Scand J Haematol. 1982 Nov;29(5):389–397. doi: 10.1111/j.1600-0609.1982.tb00613.x. [DOI] [PubMed] [Google Scholar]
  15. Lehrer R. I., Cline M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 1969 Aug;48(8):1478–1488. doi: 10.1172/JCI106114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. doi: 10.1126/science.185.4150.529. [DOI] [PubMed] [Google Scholar]
  17. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  18. McPhail L. C., Henson P. M., Johnston R. B., Jr Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation. J Clin Invest. 1981 Mar;67(3):710–716. doi: 10.1172/JCI110087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newburger P. E., Chovaniec M. E., Cohen H. J. Activity and activation of the granulocyte superoxide-generating system. Blood. 1980 Jan;55(1):85–92. [PubMed] [Google Scholar]
  20. Odajima T., Yamazaki I. Myeloneperoxidase of the leukocyte of normal blood. 3. The reaction of ferric myeloperoxidase with superoxide anion. Biochim Biophys Acta. 1972 Oct 12;284(2):355–359. doi: 10.1016/0005-2744(72)90130-1. [DOI] [PubMed] [Google Scholar]
  21. Parry M. F., Root R. K., Metcalf J. A., Delaney K. K., Kaplow L. S., Richar W. J. Myeloperoxidase deficiency: prevalence and clinical significance. Ann Intern Med. 1981 Sep;95(3):293–301. doi: 10.7326/0003-4819-95-3-293. [DOI] [PubMed] [Google Scholar]
  22. Rosen H., Klebanoff S. J. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest. 1976 Jul;58(1):50–60. doi: 10.1172/JCI108458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smail E. H., Melnick D. A., Ruggeri R., Diamond R. D. A novel natural inhibitor from Candida albicans hyphae causing dissociation of the neutrophil respiratory burst response to chemotactic peptides from other post-activation events. J Immunol. 1988 Jun 1;140(11):3893–3899. [PubMed] [Google Scholar]
  24. Suematsu M., Suzuki M., Kitahora T., Miura S., Suzuki K., Hibi T., Watanabe M., Nagata H., Asakura H., Tsuchiya M. Increased respiratory burst of leukocytes in inflammatory bowel diseases--the analysis of free radical generation by using chemiluminescence probe. J Clin Lab Immunol. 1987 Nov;24(3):125–128. [PubMed] [Google Scholar]
  25. Verspaget H. W., Elmgreen J., Weterman I. T., Peña A. S., Riis P., Lamers C. B. Impaired activation of the neutrophil oxidative metabolism in chronic inflammatory bowel disease. Scand J Gastroenterol. 1986 Nov;21(9):1124–1130. doi: 10.3109/00365528608996432. [DOI] [PubMed] [Google Scholar]
  26. Verspaget H. W., Mieremet-Ooms M. A., Weterman I. T., Peña A. S. Partial defect of neutrophil oxidative metabolism in Crohn's disease. Gut. 1984 Aug;25(8):849–853. doi: 10.1136/gut.25.8.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Verspaget H. W., Peña A. S., Weterman I. T., Lamers C. B. Diminished neutrophil function in Crohn's disease and ulcerative colitis identified by decreased oxidative metabolism and low superoxide dismutase content. Gut. 1988 Feb;29(2):223–228. doi: 10.1136/gut.29.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES