Skip to main content
Gut logoLink to Gut
. 1991 Jan;32(1):55–60. doi: 10.1136/gut.32.1.55

Candidacidal activity of Crohn's disease neutrophils.

F T Curran 1, D J Youngs 1, R N Allan 1, M R Keighley 1
PMCID: PMC1379214  PMID: 1991639

Abstract

The ability of normal and Crohn's disease neutrophils to kill Candida albicans has been studied using neutrophils isolated from peripheral blood and suspended in phosphate buffered saline at 5 x 10(6) cells per ml. C albicans was grown to a stationary phase in broth culture and suspended in phosphate buffered saline at 10(7) organisms/ml. Neutrophils and Candida were then incubated together at 37 degrees C in a shaking water bath in the presence of fresh serum. At 30 and 60 minutes samples were withdrawn, neutrophils lysed, and Candida survival assessed by colony counting. Results were compared with control suspensions of Candida incubated with serum alone. After 30 and 60 minutes in the presence of autologous serum normal neutrophils had killed significantly more Candida than Crohn's disease neutrophils (mean (SD) 61.0 (16.7)% v 40.5 (16.2)% at 30 minutes, p less than 0.0001; 83.2 (7)% v 70.8) 16)% at 60 minutes, p less than 0.005). The results did not alter significantly when normal neutrophils were incubated with Candida in the presence of Crohn's disease serum instead of normal serum. When Crohn's disease neutrophils were incubated with Candida in the presence of normal serum instead of autologous serum there was some improvement in candidacidal ability at 30 minutes (48.9 (20.6)% v 40.5 (16.2)%, p less than 0.03) but not at 60 minutes. Phagocytosis, measured using a radiometric assay, was normal. Neutrophils from patients with Crohn's disease have an impaired ability to kill this granuloma provoking organism. It is not due to serum inhibitors or defective phagocytosis.

Full text

PDF
55

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. G. Letter: Allergy in the gastrointestinal tract. Lancet. 1975 Dec 20;2(7947):1264–1264. doi: 10.1016/s0140-6736(75)92114-5. [DOI] [PubMed] [Google Scholar]
  2. Axtell R. A. Evaluation of the patient with a possible phagocytic disorder. Hematol Oncol Clin North Am. 1988 Mar;2(1):1–12. [PubMed] [Google Scholar]
  3. Baine W. B., Koenig M. G., Goodman J. S. Clearance of Candida albicans from the bloodstream of rabbits. Infect Immun. 1974 Dec;10(6):1420–1425. doi: 10.1128/iai.10.6.1420-1425.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barlow A. J., Aldersley T., Chattaway F. W. Factors present in serum and seminal plasma which promote germ-tube formation and mycelial growth of Candida albicans. J Gen Microbiol. 1974 Jun;82(2):261–272. doi: 10.1099/00221287-82-2-261. [DOI] [PubMed] [Google Scholar]
  5. Bridges C. G., Dasilva G. L., Yamamura M., Valdimarsson H. A radiometric assay for the combined measurement of phagocytosis and intracellular killing of Candida albicans. Clin Exp Immunol. 1980 Nov;42(2):226–233. [PMC free article] [PubMed] [Google Scholar]
  6. Brune K., Schmid L., Glatt M., Minder B. Correlation between antimicrobial activity and peroxidase content of leukocytes. Nature. 1973 Sep 28;245(5422):209–210. doi: 10.1038/245209a0. [DOI] [PubMed] [Google Scholar]
  7. Dolan C. T., Ihrke D. M. Further studies of the germ-tube test for Candida albicans identification. Am J Clin Pathol. 1971 Jun;55(6):733–734. doi: 10.1093/ajcp/55.6.733. [DOI] [PubMed] [Google Scholar]
  8. Elin R. J., Wolff S. M. Effect of pH and iron concentration on growth of Candida albicans in human serum. J Infect Dis. 1973 Jun;127(6):705–708. doi: 10.1093/infdis/127.6.705. [DOI] [PubMed] [Google Scholar]
  9. Elin R. J., Wolff S. M. The role of iron in nonspecific resistance to infection induced by endotoxin. J Immunol. 1974 Feb;112(2):737–745. [PubMed] [Google Scholar]
  10. Finkelstein R. A., Sciortino C. V., McIntosh M. A. Role of iron in microbe-host interactions. Rev Infect Dis. 1983 Sep-Oct;5 (Suppl 4):S759–S777. doi: 10.1093/clinids/5.supplement_4.s759. [DOI] [PubMed] [Google Scholar]
  11. Giddings J. C., Piovella F., Ricetti M., Jarvis A., Peake I. R., Bloom A. L. Characterization of procoagulant activity produced by cultures of human monocytes and lymphocytes separated in colloidal silica-polvinylpyrrolidone gradients. Clin Lab Haematol. 1980;2(2):121–128. doi: 10.1111/j.1365-2257.1980.tb00815.x. [DOI] [PubMed] [Google Scholar]
  12. Harvey R. F., Bradshaw J. M. A simple index of Crohn's-disease activity. Lancet. 1980 Mar 8;1(8167):514–514. doi: 10.1016/s0140-6736(80)92767-1. [DOI] [PubMed] [Google Scholar]
  13. Hermanowicz A., Gibson P. R., Jewell D. P. The role of phagocytes in inflammatory bowel disease. Clin Sci (Lond) 1985 Sep;69(3):241–249. doi: 10.1042/cs0690241. [DOI] [PubMed] [Google Scholar]
  14. Hill G. L., Blackett R. L., Pickford I. R., Bradley J. A. A survey of protein nutrition in patients with inflammatory bowel disease--a rational basis for nutritional therapy. Br J Surg. 1977 Dec;64(12):894–896. doi: 10.1002/bjs.1800641216. [DOI] [PubMed] [Google Scholar]
  15. Jepsen L. V., Skottun T. A rapid one-step method for the isolation of human granulocytes from whole blood. Scand J Clin Lab Invest. 1982 May;42(3):235–238. [PubMed] [Google Scholar]
  16. Jeunet F. S., Meuwissen H. J., Good R. A. Fate of Candida albicans in neonatally thymectomized rats. Proc Soc Exp Biol Med. 1970 Jan;133(1):53–56. doi: 10.3181/00379727-133-34405. [DOI] [PubMed] [Google Scholar]
  17. KOZINN P. J., TASCHDJIAN C. L. Enteric candidiasis. Diagnosis and clinical considerations. Pediatrics. 1962 Jul;30:71–85. [PubMed] [Google Scholar]
  18. Klebanoff S. J. Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science. 1970 Sep 11;169(3950):1095–1097. doi: 10.1126/science.169.3950.1095. [DOI] [PubMed] [Google Scholar]
  19. Lamster I., Sonis S., Hannigan A., Kolodkin A. An association between Crohn's disease, periodontal disease and enhanced neutrophil function. J Periodontol. 1978 Sep;49(9):475–479. doi: 10.1902/jop.1978.49.9.475. [DOI] [PubMed] [Google Scholar]
  20. Lehrer R. I., Cline M. J. Interaction of Candida albicans with human leukocytes and serum. J Bacteriol. 1969 Jun;98(3):996–1004. doi: 10.1128/jb.98.3.996-1004.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lehrer R. I. Measurement of candidacidal activity of specific leukocyte types in mixed cell populations I. Normal, myeloperoxidase-deficient, and chronic granulomatous disease neutrophils. Infect Immun. 1970 Jul;2(1):42–47. doi: 10.1128/iai.2.1.42-47.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rajkovic I. A., Williams R. Rapid microassays of phagocytosis, bacterial killing, superoxide and hydrogen peroxide production by human neutrophils in vitro. J Immunol Methods. 1985 Apr 8;78(1):35–47. doi: 10.1016/0022-1759(85)90327-8. [DOI] [PubMed] [Google Scholar]
  23. Renz M., Ward M., Eastwood M. A., Harkness R. A. Letter: Neutrophil function and myeloperoxidase activity in inflammatory bowel disease. Lancet. 1976 Sep 11;2(7985):584–584. doi: 10.1016/s0140-6736(76)91845-6. [DOI] [PubMed] [Google Scholar]
  24. Weinberg E. D. Iron withholding: a defense against infection and neoplasia. Physiol Rev. 1984 Jan;64(1):65–102. doi: 10.1152/physrev.1984.64.1.65. [DOI] [PubMed] [Google Scholar]
  25. Worsaae N., Staehr Johansen K., Christensen K. C. Impaired in vitro function of neutrophils in Crohn's disease. Scand J Gastroenterol. 1982 Jan;17(1):91–96. doi: 10.3109/00365528209181050. [DOI] [PubMed] [Google Scholar]
  26. Yamamura M., Boler J., Valdimarsson H. Phagocytosis measured as inhibition of uridine uptake by Candida albicans. J Immunol Methods. 1977;14(1):19–24. doi: 10.1016/s0022-1759(97)90016-8. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES