Skip to main content
Gut logoLink to Gut
. 1992 Jul;33(7):959–964. doi: 10.1136/gut.33.7.959

Role of cholecystokinin in pancreatic adaptation to massive enterectomy.

P Watanapa 1, M Egan 1, P H Deprez 1, J Calam 1, C E Sarraf 1, M R Alison 1, R C Williamson 1
PMCID: PMC1379413  PMID: 1644338

Abstract

Since pancreatic adaptation to massive proximal small bowel resection (PSBR) may be modulated through cholecystokinin (CCK) secretion, we tested the effect of the CCK antagonist CR-1409 on this response. Male Wistar rats (n = 72) weighing 220-225 g were randomised to receive either PSBR or transection/resuture followed by saline or CR-1409 (12 mg/kg daily subcutaneously). Rats were killed one, two, and three weeks post-operatively, at which time blood was obtained for CCK assay and the pancreas was assessed for proliferative activity by three parameters: nucleic acid and protein content, bromode-oxyuridine (BrdUrd) labelling index, and proliferating cell nuclear antigen (PCNA) expression. PSBR increased plasma CCK concentration by 83-102% at 1-3 weeks, irrespective of CR-1409 administration. Total pancreatic DNA content per 100 g body weight increased by 34% at two weeks (p less than 0.05) and by 82% at three weeks (p less than 0.05), while RNA content increased by 60% and 178% (p less than 0.001) and protein content by 20% and 57% (p less than 0.05). PSBR increased the BrdUrd labelling index and the percentage of PCNA immunoreactive cells. CR-1409 completely abolished this proliferative response and also prevented the rise in nucleic acid and protein contents. Apart from growth stimulation, PSBR also enhanced pancreatic exocrine function, as shown by ultrastructural evidence of an appreciable decrease in zymogen granules; CR-1409 also inhibited this functional effect of hypercholecystokininaemia. The results confirm the tropic role of CCK after PSBR, and CR-1409 prevents this pancreatic adaptation.

Full text

PDF
959

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boer G. J. A simplified microassay of DNA and RNA using ethidium bromide. Anal Biochem. 1975 May 12;65(1-2):225–231. doi: 10.1016/0003-2697(75)90507-2. [DOI] [PubMed] [Google Scholar]
  2. Bristol J. B., Williamson R. C. Nutrition, operations, and intestinal adaptation. JPEN J Parenter Enteral Nutr. 1988 May-Jun;12(3):299–309. doi: 10.1177/0148607188012003299. [DOI] [PubMed] [Google Scholar]
  3. Eysselein V. E., Eberlein G. A., Hesse W. H., Singer M. V., Goebell H., Reeve J. R., Jr Cholecystokinin-58 is the major circulating form of cholecystokinin in canine blood. J Biol Chem. 1987 Jan 5;262(1):214–217. [PubMed] [Google Scholar]
  4. Gelinas M. D., Morin C. L., Morisset J. Exocrine pancreatic function following proximal small bowel resection in rats. J Physiol. 1982 Jan;322:71–82. doi: 10.1113/jphysiol.1982.sp014023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gornacz G. E., Ghatei M. A., Al-Mukhtar M. Y., Yeats J. C., Adrian T. E., Wright N. A., Bloom S. R. Plasma enteroglucagon and CCK levels and cell proliferation in defunctioned small bowel in the rat. Dig Dis Sci. 1984 Nov;29(11):1041–1049. doi: 10.1007/BF01311257. [DOI] [PubMed] [Google Scholar]
  6. Haegel P., Stock C., Marescaux J., Petit B., Grenier J. F. Hyperplasia of the exocrine pancreas after small bowel resection in the rat. Gut. 1981 Mar;22(3):207–212. doi: 10.1136/gut.22.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall P. A., Levison D. A., Woods A. L., Yu C. C., Kellock D. B., Watkins J. A., Barnes D. M., Gillett C. E., Camplejohn R., Dover R. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol. 1990 Dec;162(4):285–294. doi: 10.1002/path.1711620403. [DOI] [PubMed] [Google Scholar]
  8. Jaskulski D., deRiel J. K., Mercer W. E., Calabretta B., Baserga R. Inhibition of cellular proliferation by antisense oligodeoxynucleotides to PCNA cyclin. Science. 1988 Jun 10;240(4858):1544–1546. doi: 10.1126/science.2897717. [DOI] [PubMed] [Google Scholar]
  9. Kurki P., Ogata K., Tan E. M. Monoclonal antibodies to proliferating cell nuclear antigen (PCNA)/cyclin as probes for proliferating cells by immunofluorescence microscopy and flow cytometry. J Immunol Methods. 1988 Apr 22;109(1):49–59. doi: 10.1016/0022-1759(88)90441-3. [DOI] [PubMed] [Google Scholar]
  10. Kurki P., Vanderlaan M., Dolbeare F., Gray J., Tan E. M. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res. 1986 Sep;166(1):209–219. doi: 10.1016/0014-4827(86)90520-3. [DOI] [PubMed] [Google Scholar]
  11. Le Pecq J. B., Paoletti C. A new fluorometric method for RNA and DNA determination. Anal Biochem. 1966 Oct;17(1):100–107. doi: 10.1016/0003-2697(66)90012-1. [DOI] [PubMed] [Google Scholar]
  12. Lilja P., Wiener I., Inoue K., Thompson J. C. Changes in circulating levels of cholecystokinin, gastrin, and pancreatic polypeptide after small bowel resection in dogs. Am J Surg. 1983 Jan;145(1):157–163. doi: 10.1016/0002-9610(83)90183-6. [DOI] [PubMed] [Google Scholar]
  13. Morris G. F., Mathews M. B. Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem. 1989 Aug 15;264(23):13856–13864. [PubMed] [Google Scholar]
  14. Nagy I., Pap A., Varró V. Time-course of changes in pancreatic size and enzyme composition in rats during starvation. Int J Pancreatol. 1989 Jul;5(1):35–45. doi: 10.1007/BF02925696. [DOI] [PubMed] [Google Scholar]
  15. Niederau C., Liddle R. A., Williams J. A., Grendell J. H. Pancreatic growth: interaction of exogenous cholecystokinin, a protease inhibitor, and a cholecystokinin receptor antagonist in mice. Gut. 1987;28 (Suppl):63–69. doi: 10.1136/gut.28.suppl.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sarles H., Hage G., Laugier R., Demol P., Bataille D. Present status of the anticholecystokinin hormone. Digestion. 1979;19(2):73–76. [PubMed] [Google Scholar]
  17. Stock-Damge C., Lhoste E., Aprahamian M., Pousse A. Gastrin modulation of pancreatic growth. Scand J Gastroenterol Suppl. 1985;112:68–74. doi: 10.3109/00365528509092215. [DOI] [PubMed] [Google Scholar]
  18. Stock-Damgé C., Aprahamian M., Lhoste E., Pousse A., Humbert W., Noriega R., Grenier J. F. Pancreatic hyperplasia after small bowel resection in the rat: dissociation from endogenous gastrin levels. Digestion. 1984;29(4):223–230. doi: 10.1159/000199037. [DOI] [PubMed] [Google Scholar]
  19. Watanapa P., Bardshall K., Calam J., Williamson R. C. Tropic role of enteroglucagon in pancreatic adaptation to subtotal enterectomy. Br J Surg. 1991 Aug;78(8):917–920. doi: 10.1002/bjs.1800780807. [DOI] [PubMed] [Google Scholar]
  20. Watanapa P., Efa E. F., Beardshall K., Calam J., Sarraf C. E., Alison M. R., Williamson R. C. Inhibitory effect of a cholecystokinin antagonist on the proliferative response of the pancreas to pancreatobiliary diversion. Gut. 1991 Sep;32(9):1049–1054. doi: 10.1136/gut.32.9.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES