Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1989;27(Suppl 1):53S–60S. doi: 10.1111/j.1365-2125.1989.tb03462.x

Effects of vigabatrin on evoked potentials in dogs

J C Arezzo, C E Schroeder, M S Litwak, D L Steward
PMCID: PMC1379680  PMID: 2757910

Abstract

1 The purpose of this study was to evaluate possible changes in brain morphology and evoked potentials associated with daily administration of 300 mg kg-1 vigabatrin in dogs.

2 Somatosensory evoked potentials (SEP) and auditory evoked potentials (AEP) were recorded at baseline and weekly for 12 weeks of treatment and every 2 weeks for 17 weeks of recovery. Morphology was assessed immediately after treatment for two treated dogs and after recovery for the remaining five treated and two control dogs.

3 Vigabatrin produced a significant slowing of the central transmission measure of the SEP with no alteration in the AEP. Vigabatrin was associated with microvacuolation in select regions of the brain including the fornix, septum, optic tract, hypothalamus, thalamus and cortex. In addition, some microglial proliferation was noted.

4 Changes in SEP and the microvacuolation fully recovered after 17 weeks of treatment.

5 The study confirms vigabatrin-induced microvacuolation in the dog and suggests these changes are associated with functional slowing of conduction in the somatosensory pathways.

Keywords: evoked potentials, GABA, vacuolation, vigabatrin

Full text

PDF
53S

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arezzo J. C., Schaumburg H. H., Vaughan H. G., Jr, Spencer P. S., Barna J. Hind limb somatosensory evoked potentials in the monkey: the effects of distal axonopathy. Ann Neurol. 1982 Jul;12(1):24–32. doi: 10.1002/ana.410120105. [DOI] [PubMed] [Google Scholar]
  2. Arezzo J. C., Simson R., Brennan N. E. Evoked potentials in the assessment of neurotoxicity in humans. Neurobehav Toxicol Teratol. 1985 Jul-Aug;7(4):299–304. [PubMed] [Google Scholar]
  3. Blakemore W. F., Palmer A. C., Noel P. R. Ultrastructural changes in isoniazid-induced brain oedema in the dog. J Neurocytol. 1972 Oct;1(3):263–278. doi: 10.1007/BF01099938. [DOI] [PubMed] [Google Scholar]
  4. Browne T. R., Mattson R. H., Penry J. K., Smith D. B., Treiman D. M., Wilder B. J., Ben-Menachem E., Napoliello M. J., Sherry K. M., Szabo G. K. Vigabatrin for refractory complex partial seizures: multicenter single-blind study with long-term follow-up. Neurology. 1987 Feb;37(2):184–189. doi: 10.1212/wnl.37.2.184. [DOI] [PubMed] [Google Scholar]
  5. Butler W. H., Ford G. P., Newberne J. W. A study of the effects of vigabatrin on the central nervous system and retina of Sprague Dawley and Lister-Hooded rats. Toxicol Pathol. 1987;15(2):143–148. doi: 10.1177/019262338701500203. [DOI] [PubMed] [Google Scholar]
  6. Giesser B. S., Kurtzberg D., Vaughan H. G., Jr, Arezzo J. C., Aisen M. L., Smith C. R., LaRocca N. G., Scheinberg L. C. Trimodal evoked potentials compared with magnetic resonance imaging in the diagnosis of multiple sclerosis. Arch Neurol. 1987 Mar;44(3):281–284. doi: 10.1001/archneur.1987.00520150035017. [DOI] [PubMed] [Google Scholar]
  7. Gram L., Lyon B. B., Dam M. Gamma-vinyl-GABA: a single-blind trial in patients with epilepsy. Acta Neurol Scand. 1983 Jul;68(1):34–39. doi: 10.1111/j.1600-0404.1983.tb04812.x. [DOI] [PubMed] [Google Scholar]
  8. Hammond E. J., Rangel R. J., Wilder B. J. Evoked potential monitoring of vigabatrin patients. Br J Clin Pract Suppl. 1988 Mar;61:16–23. [PubMed] [Google Scholar]
  9. Iversen L. L., Mitchell J. F., Srinivasan V. The release of gamma-aminobutyric acid during inhibition in the cat visual cortex. J Physiol. 1971 Jan;212(2):519–534. doi: 10.1113/jphysiol.1971.sp009339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iversen L. L. Neurotransmitters and CNS disease. Introduction. Lancet. 1982 Oct 23;2(8304):914–918. doi: 10.1016/s0140-6736(82)90876-5. [DOI] [PubMed] [Google Scholar]
  11. Lampert P. W., Schochet S. S., Jr Demyelination and remyelination in lead neuropathy. Electron microscopic studies. J Neuropathol Exp Neurol. 1968 Oct;27(4):527–545. [PubMed] [Google Scholar]
  12. Lampert P., O'Brien J., Garrett R. Hexachlorophene encephalopathy. Acta Neuropathol. 1973;23(4):326–333. doi: 10.1007/BF00687462. [DOI] [PubMed] [Google Scholar]
  13. McDonald W. I., Sears T. A. Focal experimental demyelination in the central nervous system. Brain. 1970;93(3):575–582. doi: 10.1093/brain/93.3.575. [DOI] [PubMed] [Google Scholar]
  14. Rimmer E. M., Richens A. Double-blind study of gamma-vinyl GABA in patients with refractory epilepsy. Lancet. 1984 Jan 28;1(8370):189–190. doi: 10.1016/s0140-6736(84)92112-3. [DOI] [PubMed] [Google Scholar]
  15. Roberts E. Failure of GABAergic inhibition: a key to local and global seizures. Adv Neurol. 1986;44:319–341. [PubMed] [Google Scholar]
  16. Sears T. A., Bostock H. Conduction failure in demyelination: is it inevitable? Adv Neurol. 1981;31:357–375. [PubMed] [Google Scholar]
  17. Stockard J. J., Iragui V. J. Clinically useful applications of evoked potentials in adult neurology. J Clin Neurophysiol. 1984 Apr;1(2):159–202. doi: 10.1097/00004691-198404000-00003. [DOI] [PubMed] [Google Scholar]
  18. Towfighi J., Gonatas N. K., McCree L. Hexachlorophene-induced changes in central and peripheral myelinated axons of developing and adult rats. Lab Invest. 1974 Dec;31(6):712–721. [PubMed] [Google Scholar]
  19. Tsumoto T., Eckart W., Creutzfeldt O. D. Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp Brain Res. 1979 Jan 15;34(2):351–363. doi: 10.1007/BF00235678. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES