Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1989;27(Suppl 2):139S–150S. doi: 10.1111/j.1365-2125.1989.tb03475.x

A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor

J F Waterfall
PMCID: PMC1379741  PMID: 2527528

Abstract

1 Cilazapril is the monoethyl ester prodrug form of the di-acid cilazaprilat, a new angiotensin converting enzyme (ACE) inhibitor. Cilazaprilat has an IC50 of 1.9 nM as an inhibitor of rabbit lung ACE in vitro making it one of the most potent ACE inhibitors currently available. Studies on a wide range of other enzymes show that the inhibition is highly specific.

2 An oral dose of 0.1 mg kg-1 cilazapril evoked the same maximum degree of plasma ACE inhibition (∼76%) in the rat as 0.25 mg kg-1 enalapril. Cilazapril (0.25 mg kg-1 p.o.) inhibited plasma ACE by > 95%. The rate of recovery of ACE activity was slower with cilazapril (5-6% h-1) than with enalapril (10% h-1).

3 In anaesthetised rats cilazaprilat was equipotent with ramiprilat and slightly more potent (1.5×) than enalaprilat as an inhibitor of the angiotensin I pressor response.

4 Following oral administration to conscious rats and intravenous administration to anaesthetised dogs, cilazapril was 2-4.5× more potent than enalapril as an ACE inhibitor.

5 In cats cilazapril (0.1 and 0.3 mg kg-1 p.o.) dose dependently decreased plasma ACE activity and the angiotensin pressor response. Peak effects occurred at 2 h after dosing and plasma ACE inhibition was maintained at ≥ 50% for up to 18 h. Mean arterial pressure was also decreased dose dependently with a peak effect at 3-4 h.

6 Daily oral dosing of cilazapril (30 mg kg-1 p.o.) to spontaneously hypertensive rats evoked a progressive and prolonged (24 h) antihypertensive response with a maximum decrease in systolic blood pressure of 110 mm Hg.

7 Cilazapril (10 mg kg-1 p.o. twice daily for 3.5 days) progressively decreased blood pressure in volume depleted renal hypertensive dogs. The maximum fall in systolic pressure was 39 ± 6 mm Hg.

8 Haemodynamic studies in open chest anaesthetised dogs showed that the hypotensive response to intravenous cilazapril was accompanied by a reduction in total peripheral resistance. Small decreases in cardiac output and myocardial contractile force were seen at high doses.

9 Cilazapril had no adverse effect on cardiovascular reflexes. There was no impairment of the baroreflex in rats. Exercise-induced tachycardia and pressor responses in conscious cats were unchanged.

10 Cilazapril is exceptionally well absorbed by the oral route (98% in rats).

Keywords: angiotensin converting enzyme, cilazapril, blood pressure, haemodynamics, cardiovascular reflexes

Full text

PDF
139S

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajayi A. A., Reid J. L. The effect of enalapril on baroreceptor mediated reflex function in normotensive subjects. Br J Clin Pharmacol. 1986 Mar;21(3):338–339. doi: 10.1111/j.1365-2125.1986.tb05203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attwood M. R., Francis R. J., Hassall C. H., Kröhn A., Lawton G., Natoff I. L., Nixon J. S., Redshaw S., Thomas W. A. New potent inhibitors of angiotensin converting enzyme. FEBS Lett. 1984 Jan 9;165(2):201–206. doi: 10.1016/0014-5793(84)80169-6. [DOI] [PubMed] [Google Scholar]
  3. Becker R. H., Fieber P., Schulze K. J. Physical performance during sustained converting enzyme inhibition with Hoe 498 in conscious dogs. Arch Int Pharmacodyn Ther. 1985 Dec;278(2):303–313. [PubMed] [Google Scholar]
  4. Cha S., Agarwal R. P., Parks R. E., Jr Tight-binding inhibitors-II. Non-steady state nature of inhibition of milk xanthine oxidase by allopurinol and alloxanthine and of human erythrocytic adenosine deaminase by coformycin. Biochem Pharmacol. 1975 Dec 1;24(23):2187–2197. doi: 10.1016/0006-2952(75)90051-9. [DOI] [PubMed] [Google Scholar]
  5. Coleman T. G., Salgado M. C., Bengis R. G., Davis M. H., Jr, Dent A. C. Baroreceptor reflex in the rat after converting enzyme inhibition or angiotensin receptor blockade. Clin Exp Pharmacol Physiol. 1981 Jan;8(1):79–82. doi: 10.1111/j.1440-1681.1981.tb00136.x. [DOI] [PubMed] [Google Scholar]
  6. Deutch C. E., Soffer R. L. Escherichia coli mutants defective in dipeptidyl carboxypeptidase. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5998–6001. doi: 10.1073/pnas.75.12.5998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerold M., Eigenmann R., Haeusler G. Cardiovascular effects of tiapamil (Ro 11-1781), a new calcium-entry blocker. J Cardiovasc Pharmacol. 1982 May-Jun;4(3):419–429. doi: 10.1097/00005344-198205000-00012. [DOI] [PubMed] [Google Scholar]
  8. Gerold M., Tschirky H. Measurement of blood pressure in unanaesthetized rats and mice. Arzneimittelforschung. 1968 Oct;18(10):1285–1287. [PubMed] [Google Scholar]
  9. Giudicelli J. F., Berdeaux A., Edouard A., Richer C., Jacolot D. The effect of enalapril on baroreceptor mediated reflex function in normotensive subjects. Br J Clin Pharmacol. 1985 Sep;20(3):211–218. doi: 10.1111/j.1365-2125.1985.tb05063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayakari M., Kondo Y., Izumi H. A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal Biochem. 1978 Feb;84(2):361–369. doi: 10.1016/0003-2697(78)90053-2. [DOI] [PubMed] [Google Scholar]
  11. Holck M., Fischli W., Hefti F., Gerold M. Cardiovascular effects of the new angiotensin-converting-enzyme inhibitor, cilazapril, in anesthetized and conscious dogs. J Cardiovasc Pharmacol. 1986 Jan-Feb;8(1):99–108. doi: 10.1097/00005344-198601000-00016. [DOI] [PubMed] [Google Scholar]
  12. Iso T., Yamauchi H., Suda H., Nakata K., Nishimura K., Iwao J. A new potent inhibitor of converting enzyme: (2R,4R)-2-(2-hydroxyphenyl)-3-(3-mercaptopropionyl)-4-thiazolidinecarboxylic acid(SA446). Jpn J Pharmacol. 1981 Dec;31(6):875–882. doi: 10.1254/jjp.31.875. [DOI] [PubMed] [Google Scholar]
  13. Keeton T. K., Campbell W. B. The pharmacologic alteration of renin release. Pharmacol Rev. 1980 Jun;32(2):81–227. [PubMed] [Google Scholar]
  14. Leenen F. H., Boer P., Dorhout Mees E. J. Antihypertensive effect of propranolol at rest and during exercise. Br J Clin Pharmacol. 1983 Mar;15(3):361–365. doi: 10.1111/j.1365-2125.1983.tb01511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Natoff I. L., Brewster M., Patel A. T. Method for measuring the duration of inhibition of angiotensin I-converting enzyme in vivo. J Pharmacol Methods. 1981 Jun;5(4):305–312. doi: 10.1016/0160-5402(81)90042-5. [DOI] [PubMed] [Google Scholar]
  16. Natoff I. L., Nixon J. S., Francis R. J., Klevans L. R., Brewster M., Budd J., Patel A. T., Wenger J., Worth E. Biological properties of the angiotensin-converting enzyme inhibitor cilazapril. J Cardiovasc Pharmacol. 1985 May-Jun;7(3):569–580. doi: 10.1097/00005344-198505000-00025. [DOI] [PubMed] [Google Scholar]
  17. Rasmussen S., Leth A., Ibsen H., Damkjaer Nielsen M., Nielsen F., Giese J. Converting enzyme inhibition in mild and moderate essential hypertension. II. Acta Med Scand. 1986;219(1):29–36. doi: 10.1111/j.0954-6820.1986.tb03272.x. [DOI] [PubMed] [Google Scholar]
  18. Schwab A., Weinryb I., Macerata R., Rogers W., Suh J., Khandwala A. Inhibition of angiotensin-converting enzyme by derivatives of 3-mercapto-2-methylpropanoyl glycine. Biochem Pharmacol. 1983 Jun 15;32(12):1957–1960. doi: 10.1016/0006-2952(83)90067-9. [DOI] [PubMed] [Google Scholar]
  19. Schölkens B. A., Becker R. H., Kaiser J. Cardiovascular and antihypertensive activities of the novel non-sulfhydryl converting enzyme inhibitor 2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-(1S,3S,5S)-2- azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498). Arzneimittelforschung. 1984;34(10B):1417–1425. [PubMed] [Google Scholar]
  20. Staib A. H., Appel E., Starey F., Lindner E., Grötsch H., Palm D., Grobecker H. Exercise induced changes of catecholamines and potassium in plasma of dogs after treatment with propranolol. Arzneimittelforschung. 1980;30(9):1514–1517. [PubMed] [Google Scholar]
  21. Sybertz E. J., Baum T., Ahn H. S., Desiderio D. M., Pula K. K., Tedesco R., Washington P., Sabin C., Smith E., Becker F. Angiotensin converting enzyme inhibitory activity of SCH 33844 (spirapril) in rats, dogs and monkeys. Arch Int Pharmacodyn Ther. 1987 Apr;286(2):216–229. [PubMed] [Google Scholar]
  22. Takeda K., Ashizawa H., Oguro M., Nakamura Y., Fukuyama M., Lee L. C., Inoue A., Sasaki S., Yoshimura M., Nakagawa M. Acute effects of captopril on the baroreflex of normotensive and spontaneously hypertensive rats. Jpn Heart J. 1986 Jul;27(4):511–521. doi: 10.1536/ihj.27.511. [DOI] [PubMed] [Google Scholar]
  23. Tocco D. J., deLuna F. A., Duncan A. E., Vassil T. C., Ulm E. H. The physiological disposition and metabolism of enalapril maleate in laboratory animals. Drug Metab Dispos. 1982 Jan-Feb;10(1):15–19. [PubMed] [Google Scholar]
  24. Watthey J. W., Stanton J. L., Desai M., Babiarz J. E., Finn B. M. Synthesis and biological properties of (carboxyalkyl)amino-substituted bicyclic lactam inhibitors of angiotensin converting enzyme. J Med Chem. 1985 Oct;28(10):1511–1516. doi: 10.1021/jm00148a023. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES