Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1989;27(Suppl 2):225S–234S. doi: 10.1111/j.1365-2125.1989.tb03486.x

Effects of ACE inhibition with cilazapril on splanchnic and systemic haemodynamics in man

S Gasic, G Heinz, C Kleinbloesem, A Korn
PMCID: PMC1379752  PMID: 2548552

Abstract

1 There is recent experimental evidence that the renin-angiotensin-system may play an essential role in producing splanchnic vasoconstriction. However, controversy exists as to the influence of ACE inhibition on splanchnic haemodynamics in man.

We therefore investigated whether cilazapril, a structurally new and long-acting ACE inhibitor, interacts with angiotensin I-dependent changes in splanchnic haemodynamics in man, using an experimental model.

2 The effects of cilazapril on angiotensin I-induced splanchnic and systemic haemodynamics were studied in seven normotensive men using the hepatic venous catheter technique (indocyanine-green dye), right-heart catheterisation (thermodilution method), intra-arterial blood pressure monitoring and systolic time-intervals. Dose-responses to angiotensin I were determined under control conditions and 60 min after ACE inhibition with 5 mg oral cilazapril. Angiotensin I was infused intravenously at constant rates in an increasing dose-sequence until systolic blood pressure was greater than 30 mm Hg.

3 ACE inhibition with cilazapril did not change basal splanchnic or systemic haemodynamics to any relevant extent. The angiotensin I dependent increase in systemic and pulmonary resistance and pulmonary capillary wedge pressure was attenuated by cilazapril, as indicated by the shift of the dose-response curves to the right. In the splanchnic vascular bed angiotensin I dose-dependently increased splanchnic vascular resistance and also wedge hepatic venous pressure and decreased splanchnic blood flow. These angiotensin I induced haemodynamic changes were clearly suppressed by cilazapril. The angiotensin I dose needed to produce a 30% increase in splanchnic vascular resistance, given as mean and s.e. mean, was 1.7 ± 0.3 μg min-1 during control-trials vs 7.3 ± 1.3 μg min-1 after ACE inhibition with cilazapril (P < 0.001).

4 We conclude that, in man, the influence of cilazapril on acute angiotensin I-mediated haemodynamic responses is present in the splanchnic vascular bed, and that the overall effects of cilazapril are consistent with both arterial and venous effects of the ACE inhibitor. Cilazapril effectively counteracts angiotensin I-induced splanchnic vasoconstriction.

Keywords: ACE inhibition, splanchnic vasoconstriction, splanchnic haemodynamics, systemic haemodynamics

Full text

PDF
225S

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey R. W., Bulkley G. B., Hamilton S. R., Morris J. B., Haglund U. H. Protection of the small intestine from nonocclusive mesenteric ischemic injury due to cardiogenic shock. Am J Surg. 1987 Jan;153(1):108–116. doi: 10.1016/0002-9610(87)90210-8. [DOI] [PubMed] [Google Scholar]
  2. Bradley S. E., Ingelfinger F. J., Bradley G. P., Curry J. J. THE ESTIMATION OF HEPATIC BLOOD FLOW IN MAN. J Clin Invest. 1945 Nov;24(6):890–897. doi: 10.1172/JCI101676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bratusch-Marrain P. R., Waldhäusl W. K., Gasić S., Korn A., Nowotny P. Oral glucose tolerance test: effect of different glucose loads on splanchnic carbohydrate and substrate metabolism in healthy man. Metabolism. 1980 Mar;29(3):289–295. doi: 10.1016/0026-0495(80)90071-2. [DOI] [PubMed] [Google Scholar]
  4. Bravo E. L., Tarazi R. C. Converting enzyme inhibition with an orally active compound in hypertensive man. Hypertension. 1979 Jan-Feb;1(1):39–46. doi: 10.1161/01.hyp.1.1.39. [DOI] [PubMed] [Google Scholar]
  5. Crossley I. R., Bihari D., Gimson A. E., Westaby D., Richardson P. J., Williams R. Effects of converting enzyme inhibitor on hepatic blood flow in man. Am J Med. 1984 May 31;76(5B):62–65. doi: 10.1016/0002-9343(84)90886-6. [DOI] [PubMed] [Google Scholar]
  6. Dennis P. D., Vaughan Williams E. M. The effects of indecainide, a new antidysrhythmic drug, on nodal tissues in the isolated rabbit heart. J Cardiovasc Pharmacol. 1986 Jan-Feb;8(1):1–5. doi: 10.1097/00005344-198601000-00001. [DOI] [PubMed] [Google Scholar]
  7. Escourrou P., Freund P. R., Rowell L. B., Johnson D. G. Splanchnic vasoconstriction in heat-stressed men: role of renin-angiotensin system. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1438–1443. doi: 10.1152/jappl.1982.52.6.1438. [DOI] [PubMed] [Google Scholar]
  8. Faxon D. P., Creager M. A., Halperin J. L., Bernard D. B., Ryan T. J. Redistribution of regional blood flow following angiotensin-converting enzyme inhibition. Comparison of normal subjects and patients with heart failure. Am J Med. 1984 May 31;76(5B):104–110. doi: 10.1016/0002-9343(84)90895-7. [DOI] [PubMed] [Google Scholar]
  9. Ghose K. Assessment of Peripheral adrenergic activity and its interactions with drugs in man. Eur J Clin Pharmacol. 1980 Apr;17(4):233–238. doi: 10.1007/BF00625795. [DOI] [PubMed] [Google Scholar]
  10. Ghose K., Gifford L. A., Turner P., Leighton M. Studies of the interaction of desmethylimipramine with tyramine in man after a single oral dose, and its correlation with plasma concentration. Br J Clin Pharmacol. 1976 Apr;3(2):334–337. doi: 10.1111/j.1365-2125.1976.tb00614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine T. B., Franciosa J. A., Cohn J. N. Acute and long-term response to an oral converting-enzyme inhibitor, captopril, in congestive heart failure. Circulation. 1980 Jul;62(1):35–41. doi: 10.1161/01.cir.62.1.35. [DOI] [PubMed] [Google Scholar]
  12. Levine T. B., Olivari M. T., Cohn J. N. Hemodynamic and regional blood flow response to captopril in congestive heart failure. Am J Med. 1984 May 31;76(5B):38–42. doi: 10.1016/0002-9343(84)90881-7. [DOI] [PubMed] [Google Scholar]
  13. Manthey J., Osterziel K. J., Röhrig N., Dietz R., Hackenthal E., Schmidt-Gayk H., Kübler W. Ramipril and captopril in patients with heart failure: effects on hemodynamics and vasoconstrictor systems. Am J Cardiol. 1987 Apr 24;59(10):171D–175D. doi: 10.1016/0002-9149(87)90073-7. [DOI] [PubMed] [Google Scholar]
  14. McNeill J. R., Pang C. C. Effect of pentobarbital anesthesia and surgery on the control of arterial pressure and mesenteric resistance in cats: role of vasopressin and angiotensin. Can J Physiol Pharmacol. 1982 Mar;60(3):363–368. doi: 10.1139/y82-052. [DOI] [PubMed] [Google Scholar]
  15. McNeill J. R., Stark R. D., Greenway C. V. Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol. 1970 Nov;219(5):1342–1347. doi: 10.1152/ajplegacy.1970.219.5.1342. [DOI] [PubMed] [Google Scholar]
  16. Menge H. Okklusive und nicht-okklusive mesenteriale Ischämie. Anamnestische und klinische Befunde. Z Gastroenterol Verh. 1986 Apr;21:74–79. [PubMed] [Google Scholar]
  17. Natoff I. L., Nixon J. S., Francis R. J., Klevans L. R., Brewster M., Budd J., Patel A. T., Wenger J., Worth E. Biological properties of the angiotensin-converting enzyme inhibitor cilazapril. J Cardiovasc Pharmacol. 1985 May-Jun;7(3):569–580. doi: 10.1097/00005344-198505000-00025. [DOI] [PubMed] [Google Scholar]
  18. Pedersen E. B., Danielsen H., Jensen T., Madsen M., Sørensen S. S., Thomsen O. O. Angiotensin II, aldosterone and arginine vasopressin in plasma in congestive heart failure. Eur J Clin Invest. 1986 Feb;16(1):56–60. doi: 10.1111/j.1365-2362.1986.tb01308.x. [DOI] [PubMed] [Google Scholar]
  19. ROWELL L. B., BLACKMON J. R., BRUCE R. A. INDOCYANINE GREEN CLEARANCE AND ESTIMATED HEPATIC BLOOD FLOW DURING MILD TO MAXIMAL EXERCISE IN UPRIGHT MAN. J Clin Invest. 1964 Aug;43:1677–1690. doi: 10.1172/JCI105043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Staroukine M., Devriendt J., Decoodt P., Verniory A. Relationships between plasma epinephrine, norepinephrine, dopamine and angiotensin II concentrations, renin activity, hemodynamic state and prognosis in acute heart failure. Acta Cardiol. 1984;39(2):131–138. [PubMed] [Google Scholar]
  21. Swan H. J., Ganz W., Forrester J., Marcus H., Diamond G., Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970 Aug 27;283(9):447–451. doi: 10.1056/NEJM197008272830902. [DOI] [PubMed] [Google Scholar]
  22. Swedberg K. Effects of ACE-inhibition on regional circulation in congestive heart failure. Acta Med Scand Suppl. 1986;707:91–93. doi: 10.1111/j.0954-6820.1986.tb18122.x. [DOI] [PubMed] [Google Scholar]
  23. Todd P. A., Heel R. C. Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs. 1986 Mar;31(3):198–248. doi: 10.2165/00003495-198631030-00002. [DOI] [PubMed] [Google Scholar]
  24. Ventura H. O., Frohlich E. D., Messerli F. H., Kobrin I., Kardon M. B. Cardiovascular effects and regional blood flow distribution associated with angiotensin converting enzyme inhibition (captopril) in essential hypertension. Am J Cardiol. 1985 Apr 1;55(8):1023–1026. doi: 10.1016/0002-9149(85)90739-8. [DOI] [PubMed] [Google Scholar]
  25. Viquerat C. E., Daly P., Swedberg K., Evers C., Curran D., Parmley W. W., Chatterjee K. Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities. Am J Med. 1985 Mar;78(3):455–460. doi: 10.1016/0002-9343(85)90338-9. [DOI] [PubMed] [Google Scholar]
  26. Waldhäusl W., Bratusch-Marrain P., Gasic S., Korn A., Nowotny P. Insulin production rate following glucose ingestion estimated by splanchnic C-peptide output in normal man. Diabetologia. 1979 Oct;17(4):221–227. doi: 10.1007/BF01235858. [DOI] [PubMed] [Google Scholar]
  27. Weissler A. M., Harris W. S., Schoenfeld C. D. Bedside technics for the evaluation of ventricular function in man. Am J Cardiol. 1969 Apr;23(4):577–583. doi: 10.1016/0002-9149(69)90012-5. [DOI] [PubMed] [Google Scholar]
  28. Williams L. F., Jr Vascular insufficiency of the intestines. Gastroenterology. 1971 Nov;61(5):757–777. [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES