Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1989;28(Suppl 2):95S–103S. doi: 10.1111/j.1365-2125.1989.tb03585.x

Why are converting enzyme inhibitors vasodilators?

P M Vanhoutte, W Auch-Schwelk, M L Biondi, R R Lorenz, V B Schini, M J Vidal
PMCID: PMC1379847  PMID: 2690910

Abstract

1 The primary action of the converting enzyme inhibitors to prevent the formation of angiotensin II can explain a decrease in peripheral vascular resistance in patients with elevated, but not in those with normal or reduced plasma renin levels.

2 The inhibition of the breakdown of bradykinin will potentiate the vasodilator properties of the endogenously produced peptide. These include direct relaxation of certain vascular smooth muscle, production of vasodilator prostanoids and release of endothelium-derived relaxing factor(s). The greater release of the latter in the kidney could exert a negative feedback on the release of renin.

3 In addition, converting enzyme inhibitors may directly (by a prejunctional effect) and indirectly (by curtailing the production of angiotensin II) reduce the release of noradrenaline in the blood vessel wall.

4 Converting enzyme inhibitors may also directly reduce the responsiveness of vascular smooth muscle to vasoconstrictor stimuli (e.g. α-adrenoceptor activation).

5 The different effects of these therapeutic agents may concur to induce peripheral vasodilatation.

Keywords: adrenergic neurotransmission, bradykinin, endothelium-derived contracting factor, endothelium-derived relaxing factor, prostacyclin, shear stress

Full text

PDF
95S

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamski S. W., Grega G. J. Contribution of kininase II to the waning of vascular actions of bradykinin. Am J Physiol. 1988 Jun;254(6 Pt 2):H1042–H1050. doi: 10.1152/ajpheart.1988.254.6.H1042. [DOI] [PubMed] [Google Scholar]
  2. Antonaccio M. J., Kerwin L. Evidence for prejunctional inhibition of norepinephrine release by captopril in spontaneously hypertensive rats. Eur J Pharmacol. 1980 Nov 21;68(2):209–212. doi: 10.1016/0014-2999(80)90325-8. [DOI] [PubMed] [Google Scholar]
  3. Antonaccio M. J., Rubin B., Kotler D. Effects of captopril on vascular reactivity of SHR in vivo and in vitro. Hypertension. 1981 Nov-Dec;3(6 Pt 2):II–211-5. doi: 10.1161/01.hyp.3.6_pt_2.ii-211. [DOI] [PubMed] [Google Scholar]
  4. Chiba S., Quilley C. P., McGiff J. C. Decreased vascular responsiveness produced by angiotensin-converting enzyme inhibitors in the rat isolated kidney. Hypertension. 1982 May-Jun;4(3 Pt 2):80–85. [PubMed] [Google Scholar]
  5. Clough D. P., Collis M. G., Conway J., Hatton R., Keddie J. R. Interaction of angiotensin-converting enzyme inhibitors with the function of the sympathetic nervous system. Am J Cardiol. 1982 Apr 21;49(6):1410–1414. doi: 10.1016/0002-9149(82)90352-6. [DOI] [PubMed] [Google Scholar]
  6. Collis M. G., Keddie J. R. Captopril attenuates adrenergic vasoconstriction in rat mesenteric arteries by angiotensin-dependent and -independent mechanisms. Clin Sci (Lond) 1981 Sep;61(3):281–286. doi: 10.1042/cs0610281. [DOI] [PubMed] [Google Scholar]
  7. De Jonge A., Wilffert B., Kalkman H. O., Van Meel J. C., Thoolen M. J., Timmermans P. B., Van Zwieten P. A. Captopril impairs the vascular smooth muscle contraction mediated by postsynaptic alpha 2-adrenoceptors in the pithed rat. Eur J Pharmacol. 1981 Sep 24;74(4):385–386. doi: 10.1016/0014-2999(81)90061-3. [DOI] [PubMed] [Google Scholar]
  8. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  9. Godfraind T. Mechanisms of action of calcium entry blockers. Fed Proc. 1981 Dec;40(14):2866–2871. [PubMed] [Google Scholar]
  10. Gulati N., Huggel H., Gulati O. P. Effects of captopril (SQ 14225) on norepinephrine-induced vasoconstriction in the isolated perfused mesentery and hindquarters of the rat. Arch Int Pharmacodyn Ther. 1982 Jan;255(1):168–176. [PubMed] [Google Scholar]
  11. Holtz J., Busse R., Sommer O., Bassenge E. Dilation of epicardial arteries in conscious dogs induced by angiotensin-converting enzyme inhibition with enalaprilat. J Cardiovasc Pharmacol. 1987 Mar;9(3):348–355. doi: 10.1097/00005344-198703000-00011. [DOI] [PubMed] [Google Scholar]
  12. Ignarro L. J. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989 Jan;3(1):31–36. doi: 10.1096/fasebj.3.1.2642868. [DOI] [PubMed] [Google Scholar]
  13. Johns D. W., Ayers C. R., Williams S. C. Dilation of forearm blood vessels after angiotensin-converting-enzyme inhibition by captopril in hypertensive patients. Hypertension. 1984 Jul-Aug;6(4):545–550. doi: 10.1161/01.hyp.6.4.545. [DOI] [PubMed] [Google Scholar]
  14. Kikta D. C., Fregly M. J. Effect of in vitro administration of captopril on vascular reactivity of rat aorta. Hypertension. 1982 Jan-Feb;4(1):118–124. doi: 10.1161/01.hyp.4.1.118. [DOI] [PubMed] [Google Scholar]
  15. Kirschenbaum M. A., Chaudhari A. Lack of effect of captopril on preglomerular renal microvascular prostanoid biosynthesis. Eur J Pharmacol. 1988 Apr 13;148(3):335–341. doi: 10.1016/0014-2999(88)90111-2. [DOI] [PubMed] [Google Scholar]
  16. Kudo K., Abe K., Chiba S., Sato M., Yasujima M., Kohzuki M., Omata K., Tanno M., Tsunoda K., Yoshinaga K. Role of thromboxane A2 in the hypotensive effect of captopril in essential hypertension. Hypertension. 1988 Feb;11(2):147–152. doi: 10.1161/01.hyp.11.2.147. [DOI] [PubMed] [Google Scholar]
  17. Levens N. R., Ksander G. M., Zimmerman M. B., Mullane K. M. Thromboxane synthase inhibition enhances action of converting enzyme inhibitors. Hypertension. 1989 Jan;13(1):51–62. doi: 10.1161/01.hyp.13.1.51. [DOI] [PubMed] [Google Scholar]
  18. Lindsey C. J., Bendhack L. M., Paiva A. C. Effects of teprotide, captopril and enalaprilat on arterial wall kininase and angiotensin converting activity. J Hypertens Suppl. 1987 Jul;5(2):S71–S76. doi: 10.1097/00004872-198707002-00013. [DOI] [PubMed] [Google Scholar]
  19. Ljung B., Jandhyala B., Kjellstedt A. Angiotensin I converting enzyme activity in portal vein studied in normotensive rats and in models of primary and secondary hypertension. Acta Physiol Scand. 1981 Apr;111(4):409–416. doi: 10.1111/j.1748-1716.1981.tb06756.x. [DOI] [PubMed] [Google Scholar]
  20. Lüscher T. F., Vanhoutte P. M. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension. 1986 Apr;8(4):344–348. doi: 10.1161/01.hyp.8.4.344. [DOI] [PubMed] [Google Scholar]
  21. Mimran A., Casellas D., Chevillard C., Dupont M., Jover B. Evidence for postsynaptic effect of captopril in isolated perfused rabbit kidney. Am J Cardiol. 1982 Apr 21;49(6):1540–1541. doi: 10.1016/0002-9149(82)90382-4. [DOI] [PubMed] [Google Scholar]
  22. Mizuno K., Nakamaru M., Higashimori K., Inagami T. Local generation and release of angiotensin II in peripheral vascular tissue. Hypertension. 1988 Mar;11(3):223–229. doi: 10.1161/01.hyp.11.3.223. [DOI] [PubMed] [Google Scholar]
  23. Moore T. J., Crantz F. R., Hollenberg N. K., Koletsky R. J., Leboff M. S., Swartz S. L., Levine L., Podolsky S., Dluhy R. G., Williams G. H. Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension. Hypertension. 1981 Mar-Apr;3(2):168–173. doi: 10.1161/01.hyp.3.2.168. [DOI] [PubMed] [Google Scholar]
  24. Nakagawa M., Sawada S., Uno M., Takamatsu H., Nakamura Y., Nakanishi Y., Tsuji H., Toyoda T., Sasaki S., Takeda K. Effects of angiotensin I converting enzyme (ACE) related substances upon the vascular prostacyclin generation. Agents Actions Suppl. 1987;22:55–60. doi: 10.1007/978-3-0348-9299-5_6. [DOI] [PubMed] [Google Scholar]
  25. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  26. Richer C., Doussau M. P., Giudicelli J. F. Influence of captopril and enalapril on regional vascular alpha-adrenergic receptor reactivity in SHR. Hypertension. 1984 Sep-Oct;6(5):666–674. doi: 10.1161/01.hyp.6.5.666. [DOI] [PubMed] [Google Scholar]
  27. Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
  28. Rubanyi G. M., Vanhoutte P. M. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol. 1986 May;250(5 Pt 2):H815–H821. doi: 10.1152/ajpheart.1986.250.5.H815. [DOI] [PubMed] [Google Scholar]
  29. Satoh S., Matsuoka T., Suzuki-Kusaba M., Chiba K. Inhibitory effect of cilazaprilat on norepinephrine release induced by renal nerve stimulation in anesthetized dogs. Jpn J Pharmacol. 1988 Oct;48(2):287–289. doi: 10.1254/jjp.48.287. [DOI] [PubMed] [Google Scholar]
  30. Sawada S., Toyoda T., Takamatsu H., Niwa I., Maebo N., Tsuji H., Nakagawa M., Ijichi H. Prostacyclin generation by cultured human vascular endothelial cells with reference to angiotensin I-converting enzyme. Jpn Circ J. 1986 Mar;50(3):242–247. doi: 10.1253/jcj.50.242. [DOI] [PubMed] [Google Scholar]
  31. Schölkens B. A., Xiang J. Z., Tilly H. Influence of the converting enzyme inhibitors Hoe 498, enalapril and captopril on vascular reactivity of isolated arterial preparations. Clin Exp Hypertens A. 1984;6(10-11):1807–1813. doi: 10.3109/10641968409046083. [DOI] [PubMed] [Google Scholar]
  32. Shirahase H., Usui H., Kurahashi K., Fujiwara M., Fukui K. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries. J Cardiovasc Pharmacol. 1987 Nov;10(5):517–522. doi: 10.1097/00005344-198711000-00004. [DOI] [PubMed] [Google Scholar]
  33. Story D. F., Ziogas J. Role of the endothelium on the facilitatory effects of angiotensin I and angiotensin II on noradrenergic transmission in the caudal artery of the rat. Br J Pharmacol. 1986 Jan;87(1):249–255. doi: 10.1111/j.1476-5381.1986.tb10178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Säynävälammi P., Arvola P., Kuismanen K., Seppälä E., Nurmi A. K., Manninen V., Vapaatalo H. Effects of indomethacin on hormonal and blood pressure responses to captopril in spontaneously hypertensive rats. Pharmacol Toxicol. 1987 Sep;61(3):195–198. doi: 10.1111/j.1600-0773.1987.tb01802.x. [DOI] [PubMed] [Google Scholar]
  35. Takeyama K., Minato H., Ikeno A., Hosoki K., Kadokawa T. Antihypertensive mechanism of alacepril: effect on norepinephrine-induced vasoconstrictive response in vitro and in vivo. Arzneimittelforschung. 1986;36(1):74–77. [PubMed] [Google Scholar]
  36. Tobia A. J., Giardino E. C. Renal vasodilator responses to captopril in dogs pretreated with indomethacin. Proc Soc Exp Biol Med. 1981 Jun;167(2):242–247. doi: 10.3181/00379727-167-41157. [DOI] [PubMed] [Google Scholar]
  37. Unger T., Ganten D., Lang R. E. Effect of converting enzyme inhibitors on tissue converting enzyme and angiotensin II: therapeutic implications. Am J Cardiol. 1987 Apr 24;59(10):18D–22D. doi: 10.1016/0002-9149(87)90047-6. [DOI] [PubMed] [Google Scholar]
  38. Urabe M., Su C., Lee T. J. Pre- and postsynaptic effects of angiotensins in the femoral artery of spontaneously hypertensive and Wistar-Kyoto rats. Blood Vessels. 1987;24(1-2):1–10. doi: 10.1159/000158666. [DOI] [PubMed] [Google Scholar]
  39. Vanhoutte P. M. Calcium-entry blockers, vascular smooth muscle and systemic hypertension. Am J Cardiol. 1985 Jan 25;55(3):17B–23B. doi: 10.1016/0002-9149(85)90609-5. [DOI] [PubMed] [Google Scholar]
  40. Vanhoutte P. M. Endothelium-dependent contractions in arteries and veins. Blood Vessels. 1987;24(3):141–144. doi: 10.1159/000158688. [DOI] [PubMed] [Google Scholar]
  41. Vanhoutte P. M., Katusic Z. S. Endothelium-derived contracting factor: endothelin and/or superoxide anion? Trends Pharmacol Sci. 1988 Jul;9(7):229–230. doi: 10.1016/0165-6147(88)90146-0. [DOI] [PubMed] [Google Scholar]
  42. Vanhoutte P. M., Rubanyi G. M., Miller V. M., Houston D. S. Modulation of vascular smooth muscle contraction by the endothelium. Annu Rev Physiol. 1986;48:307–320. doi: 10.1146/annurev.ph.48.030186.001515. [DOI] [PubMed] [Google Scholar]
  43. Vanhoutte P. M., Verbeuren T. J., Webb R. C. Local modulation of adrenergic neuroeffector interaction in the blood vessel well. Physiol Rev. 1981 Jan;61(1):151–247. doi: 10.1152/physrev.1981.61.1.151. [DOI] [PubMed] [Google Scholar]
  44. Wong P. C., Zimmerman B. G., Kraft E., Kounenis G., Friedman P. Pharmacological evaluation in conscious dogs of factors involved in the renal vasodilator effect of captopril. J Pharmacol Exp Ther. 1981 Dec;219(3):646–650. [PubMed] [Google Scholar]
  45. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  46. Yasuda G., Shionoiri H., Kubo T., Misu Y. Presynaptic angiotensin II receptors and captopril-induced adrenergic transmission failure probably not via converting enzyme inhibition in guinea-pig pulmonary arteries. J Hypertens Suppl. 1987 Jul;5(2):S39–S45. doi: 10.1097/00004872-198707002-00008. [DOI] [PubMed] [Google Scholar]
  47. Zimmerman B. G., Mommsen C., Kraft E. Renal vasodilatation caused by captopril in conscious normotensive and Goldblatt hypertensive dogs. Proc Soc Exp Biol Med. 1980 Sep;164(4):459–465. doi: 10.3181/00379727-164-40896. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES