Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1990 Jun;29(6):651–663. doi: 10.1111/j.1365-2125.1990.tb03686.x

Furafylline is a potent and selective inhibitor of cytochrome P450IA2 in man.

D Sesardic 1, A R Boobis 1, B P Murray 1, S Murray 1, J Segura 1, R de la Torre 1, D S Davies 1
PMCID: PMC1380167  PMID: 2378786

Abstract

1. Furafylline (1,8-dimethyl-3-(2'-furfuryl)methylxanthine) is a methylxanthine derivative that was introduced as a long-acting replacement for theophylline in the treatment of asthma. Administration of furafylline was associated with an elevation in plasma levels of caffeine, due to inhibition of caffeine oxidation, a reaction catalysed by one or more hydrocarbon-inducible isoenzymes of P450. We have now investigated the selectivity of inhibition of human monooxygenase activities by furafylline. 2. Furafylline was a potent, non-competitive inhibitor of high affinity phenacetin O-deethylase activity of microsomal fractions of human liver, a reaction catalysed by P450IA2, with an IC50 value of 0.07 microM. 3. Furafylline had either very little or no effect on human monooxygenase activities catalysed by other isoenzymes of P450, including P450IID1, P450IIC, P450IIA. Of particular interest, furafylline did not inhibit P450IA1, assessed from aryl hydrocarbon hydroxylase activity of placental samples from women who smoked cigarettes. 4. It is concluded that furafylline is a highly selective inhibitor of P450IA2 in man. 5. Furafylline was a potent inhibitor of the N3-demethylation of caffeine and of a component of the N1- and N7-demethylation. This confirms earlier suggestions that caffeine is a selective substrate of a hydrocarbon-inducible isoenzyme of P450 in man, and identifies this as P450IA2. Thus, caffeine N3-demethylation should provide a good measure of the activity of P450IA in vivo in man. 6. Although furafylline selectively inhibited P450IA2, relative to P450IA1, in the rat, this was at 1000-times the concentration required to inhibit the human isoenzyme, suggesting a major difference in the active site geometry between the human and the rat orthologues of P50IA2.

Full text

PDF
651

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitio A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem. 1978 Apr;85(2):488–491. doi: 10.1016/0003-2697(78)90245-2. [DOI] [PubMed] [Google Scholar]
  2. Atlas S. A., Vesell E. S., Nebert D. W. Genetic control of interindividual variations in the inducibility of aryl hydrocarbon hydroxylase in cultured human lymphocytes. Cancer Res. 1976 Dec;36(12):4619–4630. [PubMed] [Google Scholar]
  3. Boobis A. R., Brodie M. J., Kahn G. C., Fletcher D. R., Saunders J. H., Davies D. S. Monooxygenase activity of human liver in microsomal fractions of needle biopsy specimens. Br J Clin Pharmacol. 1980 Jan;9(1):11–19. doi: 10.1111/j.1365-2125.1980.tb04790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boobis A. R., Davies D. S. Human cytochromes P-450. Xenobiotica. 1984 Jan-Feb;14(1-2):151–185. doi: 10.3109/00498258409151404. [DOI] [PubMed] [Google Scholar]
  5. Boobis A. R., Hampden C. E., Murray S., Beaune P., Davies D. S. Attempts to phenotype human liver samples in vitro for debrisoquine 4-hydroxylase activity. Br J Clin Pharmacol. 1985 Jun;19(6):721–729. doi: 10.1111/j.1365-2125.1985.tb02706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boobis A. R., Murray S., Kahn G. C., Robertz G. M., Davies D. S. Substrate specificity of the form of cytochrome P-450 catalyzing the 4-hydroxylation of debrisoquine in man. Mol Pharmacol. 1983 Mar;23(2):474–481. [PubMed] [Google Scholar]
  7. Boobis A. R., Murray S., Seddon C. E., Davies D. S. In vitro studies of induction and inhibition of drug oxidation in man. Pharmacol Ther. 1987;33(1):101–108. doi: 10.1016/0163-7258(87)90036-2. [DOI] [PubMed] [Google Scholar]
  8. Butler M. A., Iwasaki M., Guengerich F. P., Kadlubar F. F. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7696–7700. doi: 10.1073/pnas.86.20.7696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campbell M. E., Grant D. M., Inaba T., Kalow W. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab Dispos. 1987 Mar-Apr;15(2):237–249. [PubMed] [Google Scholar]
  10. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Distlerath L. M., Reilly P. E., Martin M. V., Davis G. G., Wilkinson G. R., Guengerich F. P. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J Biol Chem. 1985 Jul 25;260(15):9057–9067. [PubMed] [Google Scholar]
  12. Farrell G. C., Cooksley W. G., Powell L. W. Drug metabolism in liver disease: activity of hepatic microsomal metabolizing enzymes. Clin Pharmacol Ther. 1979 Oct;26(4):483–492. doi: 10.1002/cpt1979264483. [DOI] [PubMed] [Google Scholar]
  13. Gonzalez F. J., Skoda R. C., Kimura S., Umeno M., Zanger U. M., Nebert D. W., Gelboin H. V., Hardwick J. P., Meyer U. A. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988 Feb 4;331(6155):442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
  14. Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
  15. Grant D. M., Campbell M. E., Tang B. K., Kalow W. Biotransformation of caffeine by microsomes from human liver. Kinetics and inhibition studies. Biochem Pharmacol. 1987 Apr 15;36(8):1251–1260. doi: 10.1016/0006-2952(87)90078-5. [DOI] [PubMed] [Google Scholar]
  16. Greenlee W. F., Poland A. An improved assay of 7-ethoxycoumarin O-deethylase activity: induction of hepatic enzyme activity in C57BL/6J and DBA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Pharmacol Exp Ther. 1978 Jun;205(3):596–605. [PubMed] [Google Scholar]
  17. Guengerich F. P., Martin M. V., Beaune P. H., Kremers P., Wolff T., Waxman D. J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J Biol Chem. 1986 Apr 15;261(11):5051–5060. [PubMed] [Google Scholar]
  18. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  19. Kahn G. C., Boobis A. R., Brodie M. J., Toverud E. L., Murray S., Davies D. S. Phenacetin O-deethylase: an activity of a cytochrome P-450 showing genetic linkage with that catalysing the 4-hydroxylation of debrisoquine? Br J Clin Pharmacol. 1985 Jul;20(1):67–76. doi: 10.1111/j.1365-2125.1985.tb02800.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kapitulnik J., Poppers P. J., Buening M. K., Fortner J. G., Conney A. H. Activation of monooxygenases in human liver by 7,8-benzoflavone. Clin Pharmacol Ther. 1977 Oct;22(4):475–484. doi: 10.1002/cpt1977224475. [DOI] [PubMed] [Google Scholar]
  21. Kawano S., Kamataki T., Yasumori T., Yamazoe Y., Kato R. Purification of human liver cytochrome P-450 catalyzing testosterone 6 beta-hydroxylation. J Biochem. 1987 Sep;102(3):493–501. doi: 10.1093/oxfordjournals.jbchem.a122081. [DOI] [PubMed] [Google Scholar]
  22. Kobayashi S., Murray S., Watson D., Sesardic D., Davies D. S., Boobis A. R. The specificity of inhibition of debrisoquine 4-hydroxylase activity by quinidine and quinine in the rat is the inverse of that in man. Biochem Pharmacol. 1989 Sep 1;38(17):2795–2799. doi: 10.1016/0006-2952(89)90433-4. [DOI] [PubMed] [Google Scholar]
  23. Koeppe P., Hamann C. A program for non-linear regression analysis to be used on desk-top computers. Comput Programs Biomed. 1980 Dec;12(2-3):121–128. doi: 10.1016/0010-468x(80)90058-6. [DOI] [PubMed] [Google Scholar]
  24. Koop D. R. Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Mol Pharmacol. 1986 Apr;29(4):399–404. [PubMed] [Google Scholar]
  25. Kotake A. N., Schoeller D. A., Lambert G. H., Baker A. L., Schaffer D. D., Josephs H. The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin Pharmacol Ther. 1982 Aug;32(2):261–269. doi: 10.1038/clpt.1982.157. [DOI] [PubMed] [Google Scholar]
  26. Kremers P., Beaune P., Cresteil T., de Graeve J., Columelli S., Leroux J. P., Gielen J. E. Cytochrome P-450 monooxygenase activities in human and rat liver microsomes. Eur J Biochem. 1981 Sep 1;118(3):599–606. doi: 10.1111/j.1432-1033.1981.tb05561.x. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Murray M. Mechanisms of the inhibition of cytochrome P-450-mediated drug oxidation by therapeutic agents. Drug Metab Rev. 1987;18(1):55–81. doi: 10.3109/03602538708998300. [DOI] [PubMed] [Google Scholar]
  29. Murray S., Boobis A. R. An assay for paracetamol, produced by the O-deethylation of phenacetin in vitro, using gas chromatography/electron capture negative ion chemical ionization mass spectrometry. Biomed Environ Mass Spectrom. 1986 Feb;13(2):91–93. doi: 10.1002/bms.1200130208. [DOI] [PubMed] [Google Scholar]
  30. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nebert D. W. Genetic differences in microsomal electron transport: the Ah locus. Methods Enzymol. 1978;52:226–240. doi: 10.1016/s0076-6879(78)52026-0. [DOI] [PubMed] [Google Scholar]
  32. Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 1989 Jan-Feb;8(1):1–13. doi: 10.1089/dna.1.1989.8.1. [DOI] [PubMed] [Google Scholar]
  33. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  34. Otton S. V., Inaba T., Kalow W. Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci. 1984 Jan 2;34(1):73–80. doi: 10.1016/0024-3205(84)90332-1. [DOI] [PubMed] [Google Scholar]
  35. Pantuck E. J., Hsiao K. C., Maggio A., Nakamura K., Kuntzman R., Conney A. H. Effect of cigarette smoking on phenacetin metabolism. Clin Pharmacol Ther. 1974 Jan;15(1):9–17. doi: 10.1002/cpt19741519. [DOI] [PubMed] [Google Scholar]
  36. Pasanen M., Raunio H., Pelkonen O. Freezing affects the activity and subcellular distribution profile of human placental xenobiotic- and steroid-metabolizing enzymes. Placenta. 1985 Nov-Dec;6(6):527–535. doi: 10.1016/s0143-4004(85)80006-0. [DOI] [PubMed] [Google Scholar]
  37. Pasanen M., Vahakangas K., Sotaniemi E. A., Pelkonen O. The effect of cigarette smoking on drug metabolism in the liver and placenta: the use of cotinine in verifying smoking status. Eur J Drug Metab Pharmacokinet. 1988 Jan-Mar;13(1):41–45. doi: 10.1007/BF03189927. [DOI] [PubMed] [Google Scholar]
  38. Pelkonen O., Pasanen M. Effect of heparin on the subcellular distribution of human placental 7-ethoxycoumarin O-deethylase activity. Biochem Pharmacol. 1981 Dec 1;30(23):3254–3256. doi: 10.1016/0006-2952(81)90529-3. [DOI] [PubMed] [Google Scholar]
  39. Pelkonen O., Sotaniemi E. A., Ahokas J. T. Coumarin 7-hydroxylase activity in human liver microsomes. Properties of the enzyme and interspecies comparisons. Br J Clin Pharmacol. 1985 Jan;19(1):59–66. doi: 10.1111/j.1365-2125.1985.tb02613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Raunio H., Syngelmä T., Pasanen M., Juvonen R., Honkakoski P., Kairaluoma M. A., Sotaniemi E., Lang M. A., Pelkonen O. Immunochemical and catalytical studies on hepatic coumarin 7-hydroxylase in man, rat, and mouse. Biochem Pharmacol. 1988 Oct 15;37(20):3889–3895. doi: 10.1016/0006-2952(88)90070-6. [DOI] [PubMed] [Google Scholar]
  41. Reik L. M., Levin W., Ryan D. E., Maines S. L., Thomas P. E. Monoclonal antibodies distinguish among isozymes of the cytochrome P-450b subfamily. Arch Biochem Biophys. 1985 Nov 1;242(2):365–382. doi: 10.1016/0003-9861(85)90221-8. [DOI] [PubMed] [Google Scholar]
  42. Reinke L. A., Moyer M. J. p-Nitrophenol hydroxylation. A microsomal oxidation which is highly inducible by ethanol. Drug Metab Dispos. 1985 Sep-Oct;13(5):548–552. [PubMed] [Google Scholar]
  43. Sesardic D., Boobis A. R., Edwards R. J., Davies D. S. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol. 1988 Oct;26(4):363–372. doi: 10.1111/j.1365-2125.1988.tb03393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sheets J. J., Mason J. I., Wise C. A., Estabrook R. W. Inhibition of rat liver microsomal cytochrome P-450 steroid hydroxylase reactions by imidazole antimycotic agents. Biochem Pharmacol. 1986 Feb 1;35(3):487–491. doi: 10.1016/0006-2952(86)90224-8. [DOI] [PubMed] [Google Scholar]
  45. Song B. J., Gelboin H. V., Park S. S., Tsokos G. C., Friedman F. K. Monoclonal antibody-directed radioimmunoassay detects cytochrome P-450 in human placenta and lymphocytes. Science. 1985 Apr 26;228(4698):490–492. doi: 10.1126/science.2580351. [DOI] [PubMed] [Google Scholar]
  46. Speirs C. J., Murray S., Boobis A. R., Seddon C. E., Davies D. S. Quinidine and the identification of drugs whose elimination is impaired in subjects classified as poor metabolizers of debrisoquine. Br J Clin Pharmacol. 1986 Dec;22(6):739–743. doi: 10.1111/j.1365-2125.1986.tb02969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tarrus E., Cami J., Roberts D. J., Spickett R. G., Celdran E., Segura J. Accumulation of caffeine in healthy volunteers treated with furafylline. Br J Clin Pharmacol. 1987 Jan;23(1):9–18. doi: 10.1111/j.1365-2125.1987.tb03003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tarrús E., García I., Roberts D. J., Segura J. An animal model for the detection of drug-induced inhibition of caffeine metabolism. Methods Find Exp Clin Pharmacol. 1987 May;9(5):311–316. [PubMed] [Google Scholar]
  49. Wilson N. M., Christou M., Turner C. R., Wrighton S. A., Jefcoate C. R. Binding and metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene by seven purified forms of cytochrome P-450. Carcinogenesis. 1984 Nov;5(11):1475–1483. doi: 10.1093/carcin/5.11.1475. [DOI] [PubMed] [Google Scholar]
  50. Wong T. K., Domin B. A., Bent P. E., Blanton T. E., Anderson M. W., Philpot R. M. Correlation of placental microsomal activities with protein detected by antibodies to rabbit cytochrome P-450 isozyme 6 in preparations from humans exposed to polychlorinated biphenyls, quaterphenyls, and dibenzofurans. Cancer Res. 1986 Feb;46(2):999–1004. [PubMed] [Google Scholar]
  51. Wrighton S. A., Campanile C., Thomas P. E., Maines S. L., Watkins P. B., Parker G., Mendez-Picon G., Haniu M., Shively J. E., Levin W. Identification of a human liver cytochrome P-450 homologous to the major isosafrole-inducible cytochrome P-450 in the rat. Mol Pharmacol. 1986 Apr;29(4):405–410. [PubMed] [Google Scholar]
  52. Wrighton S. A., Maurel P., Schuetz E. G., Watkins P. B., Young B., Guzelian P. S. Identification of the cytochrome P-450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p. Biochemistry. 1985 Apr 23;24(9):2171–2178. doi: 10.1021/bi00330a010. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES