Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1992 Apr;33(4):369–375. doi: 10.1111/j.1365-2125.1992.tb04054.x

Stereoselective disposition of flurbiprofen in normal volunteers.

M P Knadler 1, D C Brater 1, S D Hall 1
PMCID: PMC1381325  PMID: 1576065

Abstract

1. The concentrations of the R- and S-enantiomers of flurbiprofen and its metabolites were measured in plasma and urine following the oral administration of 50 mg racemic flurbiprofen to six normal volunteers. 2. The AUC and half-life of the R-enantiomer were significantly lower than the corresponding S-enantiomer values reflecting the greater clearance of R-flurbiprofen (20.42 +/- 4.71 vs 16.12 +/- 3.60 ml min-1). 3. Ex vivo protein binding studies indicated that the percent unbound of R-flurbiprofen was (not significantly) greater than that of the S-enantiomer (0.055 +/- 0.008 vs 0.049 +/- 0.009) and the corresponding unbound clearances did not show enantioselectivity. 4. Both enantiomers were cleared primarily by metabolism to an acylglucuronide and 4'-hydroxyflurbiprofen. There was significant enantioselectivity (R greater than S) in the formation clearances of these metabolites which remained when unbound metabolite formation clearances were considered. 5. In conclusion, the disposition of the enantiomers of flurbiprofen exhibits enantioselectivity at the level of protein binding and metabolite formation.

Full text

PDF
369

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banfield C., O'Reilly R., Chan E., Rowland M. Phenylbutazone-warfarin interaction in man: further stereochemical and metabolic considerations. Br J Clin Pharmacol. 1983 Dec;16(6):669–675. doi: 10.1111/j.1365-2125.1983.tb02239.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry B. W., Jamali F. Enantiomeric interaction of flurbiprofen in the rat. J Pharm Sci. 1989 Aug;78(8):632–634. doi: 10.1002/jps.2600780806. [DOI] [PubMed] [Google Scholar]
  3. Caldwell J., Marsh M. V. Interrelationships between xenobiotic metabolism and lipid biosynthesis. Biochem Pharmacol. 1983 Jun 1;32(11):1667–1672. doi: 10.1016/0006-2952(83)90107-7. [DOI] [PubMed] [Google Scholar]
  4. Chiou W. L. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level--time curve. J Pharmacokinet Biopharm. 1978 Dec;6(6):539–546. doi: 10.1007/BF01062108. [DOI] [PubMed] [Google Scholar]
  5. Day R. O., Brooks P. M. Variations in response to non-steroidal anti-inflammatory drugs. Br J Clin Pharmacol. 1987 Jun;23(6):655–658. doi: 10.1111/j.1365-2125.1987.tb03098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans A. M., Nation R. L., Sansom L. N., Bochner F., Somogyi A. A. Stereoselective plasma protein binding of ibuprofen enantiomers. Eur J Clin Pharmacol. 1989;36(3):283–290. doi: 10.1007/BF00558161. [DOI] [PubMed] [Google Scholar]
  7. Greig M. E., Griffin R. L. Antagonism of slow reacting substance in anaphylaxis (SRS-A) and other spasmogens on the guinea pig tracheal chain by hydratropic acids and their effects on anaphylaxis. J Med Chem. 1975 Jan;18(1):112–116. doi: 10.1021/jm00235a027. [DOI] [PubMed] [Google Scholar]
  8. Hendel J., Brodthagen H. Entero-hepatic cycling of methotrexate estimated by use of the D-isomer as a reference marker. Eur J Clin Pharmacol. 1984;26(1):103–107. doi: 10.1007/BF00546716. [DOI] [PubMed] [Google Scholar]
  9. Hutt A. J., Caldwell J. The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin Pharmacokinet. 1984 Jul-Aug;9(4):371–373. doi: 10.2165/00003088-198409040-00007. [DOI] [PubMed] [Google Scholar]
  10. Jamali F., Berry B. W., Tehrani M. R., Russell A. S. Stereoselective pharmacokinetics of flurbiprofen in humans and rats. J Pharm Sci. 1988 Aug;77(8):666–669. doi: 10.1002/jps.2600770805. [DOI] [PubMed] [Google Scholar]
  11. Jamali F., Mehvar R., Pasutto F. M. Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci. 1989 Sep;78(9):695–715. doi: 10.1002/jps.2600780902. [DOI] [PubMed] [Google Scholar]
  12. Knadler M. P., Hall S. D. High-performance liquid chromatographic analysis of the enantiomers of flurbiprofen and its metabolites in plasma and urine. J Chromatogr. 1989 Sep 29;494:173–182. doi: 10.1016/s0378-4347(00)82666-3. [DOI] [PubMed] [Google Scholar]
  13. Knadler M. P., Hall S. D. Stereoselective arylpropionyl-CoA thioester formation in vitro. Chirality. 1990;2(2):67–73. doi: 10.1002/chir.530020202. [DOI] [PubMed] [Google Scholar]
  14. Knihinicki R. D., Williams K. M., Day R. O. Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs--1. In vitro studies of ibuprofen and flurbiprofen. Biochem Pharmacol. 1989 Dec 15;38(24):4389–4395. doi: 10.1016/0006-2952(89)90647-3. [DOI] [PubMed] [Google Scholar]
  15. Lee E. J., Williams K., Day R., Graham G., Champion D. Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol. 1985 May;19(5):669–674. doi: 10.1111/j.1365-2125.1985.tb02694.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin J. H., Cocchetto D. M., Duggan D. E. Protein binding as a primary determinant of the clinical pharmacokinetic properties of non-steroidal anti-inflammatory drugs. Clin Pharmacokinet. 1987 Jun;12(6):402–432. doi: 10.2165/00003088-198712060-00002. [DOI] [PubMed] [Google Scholar]
  17. Risdall P. C., Adams S. S., Crampton E. L., Marchant B. The disposition and metabolism of flurbiprofen in several species including man. Xenobiotica. 1978 Nov;8(11):691–703. doi: 10.3109/00498257809069581. [DOI] [PubMed] [Google Scholar]
  18. Rubin A., Knadler M. P., Ho P. P., Bechtol L. D., Wolen R. L. Stereoselective inversion of (R)-fenoprofen to (S)-fenoprofen in humans. J Pharm Sci. 1985 Jan;74(1):82–84. doi: 10.1002/jps.2600740122. [DOI] [PubMed] [Google Scholar]
  19. Szpunar G. J., Albert K. S., Bole G. G., Dreyfus J. N., Lockwood G. F., Wagner J. G. Pharmacokinetics of flurbiprofen in man. I. Area/dose relationships. Biopharm Drug Dispos. 1987 May-Jun;8(3):273–283. doi: 10.1002/bdd.2510080308. [DOI] [PubMed] [Google Scholar]
  20. Tamai I., Ling H. Y., Timbul S. M., Nishikido J., Tsuji A. Stereospecific absorption and degradation of cephalexin. J Pharm Pharmacol. 1988 May;40(5):320–324. doi: 10.1111/j.2042-7158.1988.tb05259.x. [DOI] [PubMed] [Google Scholar]
  21. Toon S., Low L. K., Gibaldi M., Trager W. F., O'Reilly R. A., Motley C. H., Goulart D. A. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther. 1986 Jan;39(1):15–24. doi: 10.1038/clpt.1986.3. [DOI] [PubMed] [Google Scholar]
  22. Tozer T. N. Concepts basic to pharmacokinetics. Pharmacol Ther. 1981;12(1):109–131. doi: 10.1016/0163-7258(81)90077-2. [DOI] [PubMed] [Google Scholar]
  23. Tucker G. T., Lennard M. S. Enantiomer specific pharmacokinetics. Pharmacol Ther. 1990;45(3):309–329. doi: 10.1016/0163-7258(90)90069-e. [DOI] [PubMed] [Google Scholar]
  24. Wade D. N., Mearrick P. T., Morris J. L. Active transport of L-dopa in the intestine. Nature. 1973 Apr 13;242(5398):463–465. doi: 10.1038/242463a0. [DOI] [PubMed] [Google Scholar]
  25. Williams K. M., Day R. O. Stereoselective disposition--basis for variability in response to NSAID's. Agents Actions Suppl. 1985;17:119–126. doi: 10.1007/978-3-0348-7720-6_14. [DOI] [PubMed] [Google Scholar]
  26. Williams K. M. Enantiomers in arthritic disorders. Pharmacol Ther. 1990;46(2):273–295. doi: 10.1016/0163-7258(90)90095-j. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES