Abstract
1. In a double-blind, placebo-controlled study the effects of venlafaxine--a novel nontricyclic compound inhibiting neuronal uptake of serotonin, noradrenaline and to a lesser extent dopamine--were investigated utilizing EEG brain mapping, psychometric and psychophysiological measures. 2. Sixteen healthy volunteers (eight males, eight females) aged 21-36 years received randomized and at weekly intervals single oral doses of placebo, 12.5 mg, 25 mg and 50 mg venlafaxine. EEG recordings, psychometric and psychophysiological tests, and evaluation of pulse, blood pressure and side-effects were carried out at 0, 2, 4, 6, and 8 h. 3. EEG brain mapping demonstrated that venlafaxine exerted a significant action on human brain function as compared with placebo at all three doses, characterized mostly by attenuation of absolute power, increase of relative delta/theta and beta, and decrease of alpha power, as well as by an acceleration of the total centroid fronto-temporally and by its slowing centrally and parietally. These findings are similar to antidepressants such as imipramine. Topographically, drug-induced alterations were most pronounced over both fronto-temporal and the right temporal to temporo-occipital regions. 4. Psychometric and psychophysiological investigations demonstrated significant dose-dependent psychotropic properties of the drug. Multivariate statistics exhibited an improvement of both the noopsyche (e.g. attention, concentration, attention variability, memory, fine motor activity, reaction time performance) and thymopsyche (e.g. drive, wakefulness)) but also significant psychophysiological activation (e.g. in c.f.f., pupillary and skin conductance measures). 5. Time-efficiency calculations showed significant central effects from the 2nd hour onwards, with increasing differences between placebo and treatment up to the 8th hour. Nausea was the most frequent complaint and appeared dose dependent.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderer P., Saletu B., Kinsperger K., Semlitsch H. Topographic brain mapping of EEG in neuropsychopharmacology--Part I. Methodological aspects. Methods Find Exp Clin Pharmacol. 1987 Jun;9(6):371–384. [PubMed] [Google Scholar]
- Brumback R. A., Staton R. D., Wilson H. Neuropsychological study of children during and after remission of endogenous depressive episodes. Percept Mot Skills. 1980 Jun;50(3 Pt 2):1163–1167. doi: 10.2466/pms.1980.50.3c.1163. [DOI] [PubMed] [Google Scholar]
- Davidson R. J. EEG measures of cerebral asymmetry: conceptual and methodological issues. Int J Neurosci. 1988 Mar;39(1-2):71–89. doi: 10.3109/00207458808985694. [DOI] [PubMed] [Google Scholar]
- Duffy F. H., Bartels P. H., Burchfiel J. L. Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephalogr Clin Neurophysiol. 1981 May;51(5):455–462. doi: 10.1016/0013-4694(81)90221-2. [DOI] [PubMed] [Google Scholar]
- Fink M. EEG and human psychopharmacology. Annu Rev Pharmacol. 1969;9:241–258. doi: 10.1146/annurev.pa.09.040169.001325. [DOI] [PubMed] [Google Scholar]
- Flor-Henry P. Lateralized temporal-limbic dysfunction and psychopathology. Ann N Y Acad Sci. 1976;280:777–797. doi: 10.1111/j.1749-6632.1976.tb25541.x. [DOI] [PubMed] [Google Scholar]
- Flor-Henry P. Psychosis, neurosis and epilepsy. Developmental and gender-related effects and their aetiological contribution. Br J Psychiatry. 1974 Feb;124(579):144–150. doi: 10.1192/bjp.124.2.144. [DOI] [PubMed] [Google Scholar]
- Gasser T., Bächer P., Möcks J. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol. 1982 Jan;53(1):119–124. doi: 10.1016/0013-4694(82)90112-2. [DOI] [PubMed] [Google Scholar]
- Goldberg H. L., Finnerty R. An open-label, variable-dose study of WY-45,030 (venlafexine) in depressed outpatients. Psychopharmacol Bull. 1988;24(1):198–199. [PubMed] [Google Scholar]
- Grünberger J., Linzmayer L., Saletu B. Klinische Psychodiagnostik mit Hilfe psychophysiologischer Verfahren. Wien Med Wochenschr. 1984 Jan 31;134(2):29–35. [PubMed] [Google Scholar]
- Grünberger J., Linzmayer L., Stöhr H., Wittek R., Saletu B. Computerunterstützte Rigiditätsmessung zur Differenzierung psychopathologischer Gruppen. Wien Med Wochenschr. 1988 May 15;138(9):206–212. [PubMed] [Google Scholar]
- Grünberger J., Saletu B. Determination of pharmacodynamics of psychotropic drugs by psychometric analysis. Prog Neuropsychopharmacol. 1980;4(4-5):417–434. doi: 10.1016/0364-7722(80)90012-0. [DOI] [PubMed] [Google Scholar]
- Kronfol Z., Hamsher K. D., Digre K., Waziri R. Depression and hemispheric functions: changes associated with unilateral ECT. Br J Psychiatry. 1978 Jun;132:560–567. doi: 10.1192/bjp.132.6.560. [DOI] [PubMed] [Google Scholar]
- Langer S. Z., Moret C., Raisman R., Dubocovich M. L., Briley M. High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not of norepinephrine. Science. 1980 Dec 5;210(4474):1133–1135. doi: 10.1126/science.7444441. [DOI] [PubMed] [Google Scholar]
- Muth E. A., Haskins J. T., Moyer J. A., Husbands G. E., Nielsen S. T., Sigg E. B. Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative. Biochem Pharmacol. 1986 Dec 15;35(24):4493–4497. doi: 10.1016/0006-2952(86)90769-0. [DOI] [PubMed] [Google Scholar]
- Perris C., Monakhov K., von Knorring L., Botskarev V., Nikiforov A. Systemic structural analysis of the electroencephalogram of depressed patients. General principles and preliminary results of an international collaborative study. Neuropsychobiology. 1978;4(4):207–228. doi: 10.1159/000117634. [DOI] [PubMed] [Google Scholar]
- Raisman R., Briley M. S., Langer S. Z. Specific tricyclic antidepressant binding sites in rat brain characterised by high-affinity 3H-imipramine binding. Eur J Pharmacol. 1980 Feb;61(4):373–380. doi: 10.1016/0014-2999(80)90076-x. [DOI] [PubMed] [Google Scholar]
- Saletu B., Anderer P., Kinsperger K., Grünberger J. Topographic brain mapping of EEG in neuropsychopharmacology--Part II. Clinical applications (pharmaco EEG imaging). Methods Find Exp Clin Pharmacol. 1987 Jun;9(6):385–408. [PubMed] [Google Scholar]
- Saletu B., Grünberger J. Classification and determination of cerebral bioavailability of fluoxetine: pharmacokinetic, pharmaco-EEG, and psychometric analyses. J Clin Psychiatry. 1985 Mar;46(3 Pt 2):45–52. [PubMed] [Google Scholar]
- Saletu B., Grünberger J., Linzmayer L. On central effects of serotonin re-uptake inhibitors: quantitative EEG and psychometric studies with sertraline and zimelidine. J Neural Transm. 1986;67(3-4):241–266. doi: 10.1007/BF01243351. [DOI] [PubMed] [Google Scholar]
- Saletu B., Grünberger J., Linzmayer L., Taeuber K. The pharmacokinetics of nomifensine. Comparison of pharmacokinetics and pharmacodynamics using computer pharmaco-EEG. Int Pharmacopsychiatry. 1982;17 (Suppl 1):43–72. doi: 10.1159/000468601. [DOI] [PubMed] [Google Scholar]
- Saletu B., Grünberger J. On acute and chronic CNS effects of antidepressants in normals: neurophysiological, behavioral and pharmacokinetic studies with pirlindol. Methods Find Exp Clin Pharmacol. 1985 Mar;7(3):137–151. [PubMed] [Google Scholar]
- Saletu B., Grünberger J., Rajna P., Karobath M. Clovoxamine and fluvoxamine-2 biogenic amine re-uptake inhibiting antidepressants: quantitative EEG, psychometric and pharmacokinetic studies in man. J Neural Transm. 1980;49(1-2):63–86. doi: 10.1007/BF01249190. [DOI] [PubMed] [Google Scholar]
- Saletu B. Pharmaco-EEG profiles of typical and atypical antidepressants. Adv Biochem Psychopharmacol. 1982;32:257–268. [PubMed] [Google Scholar]
- Schweizer E., Clary C., Weise C., Rickels K. An open-label, dose-finding study of WY-45,030, a novel bicyclic antidepressant. Psychopharmacol Bull. 1988;24(1):195–197. [PubMed] [Google Scholar]
- Yozawitz A., Bruder G., Sutton S., Sharpe L., Gurland B., Fleiss J., Costa L. Dichotic perception: evidence for right hemisphere dysfunction in affective psychosis. Br J Psychiatry. 1979 Sep;135:224–237. doi: 10.1192/bjp.135.3.224. [DOI] [PubMed] [Google Scholar]
- von Zerssen D., Koeller D. M., Rey E. R. Die Befindlichkeits-Skala (B-S)--ein einfaches Instrument zur Objektivierung von Befindlichkeitsstörungen, insbesondere im Rahmen von Längsschnittuntersuchungen. Arzneimittelforschung. 1970 Jul;20(7):915–918. [PubMed] [Google Scholar]