Abstract
1. The relationships between renal creatinine clearance and the renal clearances of morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) were studied in fifteen intensive-care patients who were receiving morphine sulphate by constant intravenous infusion and who had diverse renal function. 2. An arterial blood sample was collected before and after a 4-5 h urine collection. Plasma and urine concentrations of morphine, M3G and M6G were measured by h.p.l.c. Plasma binding of all three compounds in drug-free plasma from healthy volunteers was determined by ultrafiltration. Measured renal creatinine clearance (CLCr,meas) was calculated from plasma and urinary creatinine concentrations (from h.p.l.c.). Also, creatinine clearance was predicted (CLCr,pred) from routine laboratory determination of plasma creatinine (Jaffe method). 3. There were significant linear relationships (P less than 0.001) between CLCr,meas and the renal clearances of morphine, M3G and M6G. The unbound renal clearance of morphine exceeded CLCr,meas (P less than 0.002) while the unbound renal clearances of M3G and M6G did not differ from CLCr,meas (P greater than 0.5). 4. In ten of the patients who received a constant infusion of morphine for at least 6 h, the dose-normalised plasma concentrations of M3G and M6G increased with decreasing CLCr,pred. Significant (P less than 0.001) relationships were observed between the reciprocal of CLCr,pred and the dose-normalised plasma concentrations of M3G and M6G. 5. The results indicate the importance of renal function in determining the renal clearances and plasma concentrations of M3G and M6G during intravenous infusion with morphine in intensive-care patients.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott F. V., Palmour R. M. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci. 1988;43(21):1685–1695. doi: 10.1016/0024-3205(88)90479-1. [DOI] [PubMed] [Google Scholar]
- Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
- Don H. F., Dieppa R. A., Taylor P. Narcotic analgesics in anuric patients. Anesthesiology. 1975 Jun;42(6):745–747. doi: 10.1097/00000542-197506000-00021. [DOI] [PubMed] [Google Scholar]
- Garrett E. R., Jackson A. J. Pharmacokinetics of morphine and its surrogates. III: Morphine and morphine 3-monoglucuronide pharmacokinetics in the dog as a function of dose. J Pharm Sci. 1979 Jun;68(6):753–771. doi: 10.1002/jps.2600680627. [DOI] [PubMed] [Google Scholar]
- Gong Q. L., Hedner T., Hedner J., Björkman R., Nordberg G. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol. 1991 Jan 25;193(1):47–56. doi: 10.1016/0014-2999(91)90199-z. [DOI] [PubMed] [Google Scholar]
- Hakim R., Fujimoto J. M. Inhibition of renal tubular transport of morphine by -diethylaminoethyl diphenylpropylacetate in the chicken. Biochem Pharmacol. 1971 Oct;20(10):2647–2662. doi: 10.1016/0006-2952(71)90174-2. [DOI] [PubMed] [Google Scholar]
- Hasselström J., Berg U., Löfgren A., Säwe J. Long lasting respiratory depression induced by morphine-6-glucuronide? Br J Clin Pharmacol. 1989 Apr;27(4):515–518. doi: 10.1111/j.1365-2125.1989.tb05401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Y. C., Chiou W. L. Creatinine XII: comparison of assays of low serum creatinine levels using high-performance liquid chromatography and two picrate methods. J Pharm Sci. 1983 Jul;72(7):836–837. doi: 10.1002/jps.2600720736. [DOI] [PubMed] [Google Scholar]
- Luke D. R., Halstenson C. E., Opsahl J. A., Matzke G. R. Validity of creatinine clearance estimates in the assessment of renal function. Clin Pharmacol Ther. 1990 Nov;48(5):503–508. doi: 10.1038/clpt.1990.186. [DOI] [PubMed] [Google Scholar]
- Martin C., Alaya M., Bras J., Saux P., Gouin F. Assessment of creatinine clearance in intensive care patients. Crit Care Med. 1990 Nov;18(11):1224–1226. doi: 10.1097/00003246-199011000-00007. [DOI] [PubMed] [Google Scholar]
- May D. G., Fujimoto J. M., Inturrisi C. E. The tubular transport and metabolism of morphine-N-methyl-C14 by the chicken kidney. J Pharmacol Exp Ther. 1967 Sep;157(3):626–635. [PubMed] [Google Scholar]
- Milne R. W., Nation R. L., Reynolds G. D., Somogyi A. A., Van Crugten J. T. High-performance liquid chromatographic determination of morphine and its 3- and 6-glucuronide metabolites: improvements to the method and application to stability studies. J Chromatogr. 1991 Apr 19;565(1-2):457–464. doi: 10.1016/0378-4347(91)80410-e. [DOI] [PubMed] [Google Scholar]
- Olsen G. D., Bennett W. M., Porter G. A. Morphine and phenytoin binding to plasma proteins in renal and hepatic failure. Clin Pharmacol Ther. 1975 Jun;17(6):677–684. doi: 10.1002/cpt1975176677. [DOI] [PubMed] [Google Scholar]
- Osborne R. J., Joel S. P., Slevin M. L. Morphine intoxication in renal failure: the role of morphine-6-glucuronide. Br Med J (Clin Res Ed) 1986 Jun 14;292(6535):1548–1549. doi: 10.1136/bmj.292.6535.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborne R., Joel S., Trew D., Slevin M. Analgesic activity of morphine-6-glucuronide. Lancet. 1988 Apr 9;1(8589):828–828. doi: 10.1016/s0140-6736(88)91691-1. [DOI] [PubMed] [Google Scholar]
- Osborne R., Joel S., Trew D., Slevin M. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther. 1990 Jan;47(1):12–19. doi: 10.1038/clpt.1990.2. [DOI] [PubMed] [Google Scholar]
- Pasternak G. W., Bodnar R. J., Clark J. A., Inturrisi C. E. Morphine-6-glucuronide, a potent mu agonist. Life Sci. 1987 Dec 28;41(26):2845–2849. doi: 10.1016/0024-3205(87)90431-0. [DOI] [PubMed] [Google Scholar]
- Patwardhan R. V., Johnson R. F., Hoyumpa A., Jr, Sheehan J. J., Desmond P. V., Wilkinson G. R., Branch R. A., Schenker S. Normal metabolism of morphine in cirrhosis. Gastroenterology. 1981 Dec;81(6):1006–1011. [PubMed] [Google Scholar]
- Paul D., Standifer K. M., Inturrisi C. E., Pasternak G. W. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989 Nov;251(2):477–483. [PubMed] [Google Scholar]
- Pelligrino D. A., Riegler F. X., Albrecht R. F. Ventilatory effects of fourth cerebroventricular infusions of morphine-6- or morphine-3-glucuronide in the awake dog. Anesthesiology. 1989 Dec;71(6):936–940. doi: 10.1097/00000542-198912000-00018. [DOI] [PubMed] [Google Scholar]
- Persson M. P., Wiklund L., Hartvig P., Paalzow L. Potential pulmonary uptake and clearance of morphine in postoperative patients. Eur J Clin Pharmacol. 1986;30(5):567–574. doi: 10.1007/BF00542416. [DOI] [PubMed] [Google Scholar]
- Peterson G. M., Randall C. T., Paterson J. Plasma levels of morphine and morphine glucuronides in the treatment of cancer pain: relationship to renal function and route of administration. Eur J Clin Pharmacol. 1990;38(2):121–124. doi: 10.1007/BF00265969. [DOI] [PubMed] [Google Scholar]
- Rapoport A., Husdan H. Endogenous creatinine clearance and serum creatinine in the clinical assessment of kidney function. Can Med Assoc J. 1968 Jul 27;99(4):149–156. [PMC free article] [PubMed] [Google Scholar]
- Regnard C. F., Twycross R. G. Metabolism of narcotics. Br Med J (Clin Res Ed) 1984 Mar 17;288(6420):860–860. doi: 10.1136/bmj.288.6420.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shemesh O., Golbetz H., Kriss J. P., Myers B. D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985 Nov;28(5):830–838. doi: 10.1038/ki.1985.205. [DOI] [PubMed] [Google Scholar]
- Shimomura K., Kamata O., Ueki S., Ida S., Oguri K. Analgesic effect of morphine glucuronides. Tohoku J Exp Med. 1971 Sep;105(1):45–52. doi: 10.1620/tjem.105.45. [DOI] [PubMed] [Google Scholar]
- Smith M. T., Watt J. A., Cramond T. Morphine-3-glucuronide--a potent antagonist of morphine analgesia. Life Sci. 1990;47(6):579–585. doi: 10.1016/0024-3205(90)90619-3. [DOI] [PubMed] [Google Scholar]
- Svensson J. O., Rane A., Säwe J., Sjöqvist F. Determination of morphine, morphine-3-glucuronide and (tentatively) morphine-6-glucuronide in plasma and urine using ion-pair high-performance liquid chromatography. J Chromatogr. 1982 Jul 9;230(2):427–432. doi: 10.1016/s0378-4347(00)80494-6. [DOI] [PubMed] [Google Scholar]
- Säwe J., Odar-Cederlöf I. Kinetics of morphine in patients with renal failure. Eur J Clin Pharmacol. 1987;32(4):377–382. doi: 10.1007/BF00543973. [DOI] [PubMed] [Google Scholar]
- Tanguy M., Malledant Y., Le Verge R., Gibassier D., Saint-Marc C. Perfusion intraveineuse prolongée de morphine. Etude pharmacocinétique. Ann Fr Anesth Reanim. 1987;6(1):22–28. doi: 10.1016/s0750-7658(87)80005-9. [DOI] [PubMed] [Google Scholar]
- Wolff J., Bigler D., Christensen C. B., Rasmussen S. N., Andersen H. B., Tønnesen K. H. Influence of renal function on the elimination of morphine and morphine glucuronides. Eur J Clin Pharmacol. 1988;34(4):353–357. doi: 10.1007/BF00542435. [DOI] [PubMed] [Google Scholar]
- Woolner D. F., Winter D., Frendin T. J., Begg E. J., Lynn K. L., Wright G. J. Renal failure does not impair the metabolism of morphine. Br J Clin Pharmacol. 1986 Jul;22(1):55–59. doi: 10.1111/j.1365-2125.1986.tb02880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh S. Y., Gorodetzky C. W., Krebs H. A. Isolation and identification of morphine 3- and 6-glucuronides, morphine 3,6-diglucuronide, morphine 3-ethereal sulfate, normorphine, and normorphine 6-glucuronide as morphine metabolites in humans. J Pharm Sci. 1977 Sep;66(9):1288–1293. doi: 10.1002/jps.2600660921. [DOI] [PubMed] [Google Scholar]