Abstract
1. The aromatic 2-hydroxylation of imipramine was studied in microsomes from three human livers. The kinetics were best described by a biphasic enzyme model. The estimated values of Vmax and Km for the high affinity site ranged from 3.2 to 5.7 nmol mg-1 h-1 and from 25 to 31 microM, respectively. 2. Quinidine was a potent inhibitor of the high affinity site for the 2-hydroxylation of imipramine in microsomes from all three human livers, with apparent Ki-values ranging from 9 to 92 nM. This finding strongly suggests that the high affinity enzyme is CYP2D6, the source of the sparteine/debrisoquine oxidation polymorphism. 3. The selective serotonin reuptake inhibitors (SSRI), paroxetine, fluoxetine and norfluoxetine were potent inhibitors of the high affinity site having apparent Ki-values of 0.36, 0.92 and 0.33 microM, respectively. Three other SSRIs, citalopram, desmethylcitalopram and fluvoxamine, were less potent inhibitors of CYP2D6, with apparent Ki-values of 19, 1.3 and 3.9 microM, respectively. 4. Among 20 drugs screened, fluvoxamine was the only potent inhibitor of the N-demethylation of imipramine, with a Ki-value of 0.14 microM. 5. Neither mephenytoin, citalopram, diazepam, omeprazole or proguanil showed any inhibition of the N-demethylation of imipramine and the role of the S-mephenytoin hydroxylase for this oxidative pathway could not be confirmed.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson T., Regårdh C. G., Dahl-Puustinen M. L., Bertilsson L. Slow omeprazole metabolizers are also poor S-mephenytoin hydroxylators. Ther Drug Monit. 1990 Jul;12(4):415–416. doi: 10.1097/00007691-199007000-00020. [DOI] [PubMed] [Google Scholar]
- Bell I. R., Cole J. O. Fluoxetine induces elevation of desipramine level and exacerbation of geriatric nonpsychotic depression. J Clin Psychopharmacol. 1988 Dec;8(6):447–448. doi: 10.1097/00004714-198812000-00025. [DOI] [PubMed] [Google Scholar]
- Benfield P., Ward A. Fluvoxamine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1986 Oct;32(4):313–334. doi: 10.2165/00003495-198632040-00002. [DOI] [PubMed] [Google Scholar]
- Bertilsson L., Aberg-Wistedt A. The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. Br J Clin Pharmacol. 1983 Mar;15(3):388–390. doi: 10.1111/j.1365-2125.1983.tb01518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertilsson L., Henthorn T. K., Sanz E., Tybring G., Säwe J., Villén T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989 Apr;45(4):348–355. doi: 10.1038/clpt.1989.40. [DOI] [PubMed] [Google Scholar]
- Bertschy G., Vandel S., Vandel B., Allers G., Volmat R. Fluvoxamine-tricyclic antidepressant interaction. An accidental finding. Eur J Clin Pharmacol. 1991;40(1):119–120. doi: 10.1007/BF00315151. [DOI] [PubMed] [Google Scholar]
- Brøsen K., Gram L. F. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol. 1989;36(6):537–547. doi: 10.1007/BF00637732. [DOI] [PubMed] [Google Scholar]
- Brøsen K., Gram L. F., Klysner R., Bech P. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol. 1986;30(1):43–49. doi: 10.1007/BF00614194. [DOI] [PubMed] [Google Scholar]
- Brøsen K., Gram L. F., Kragh-Sørensen P. Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine, and mephenytoin. Ther Drug Monit. 1991 Mar;13(2):177–182. doi: 10.1097/00007691-199103000-00015. [DOI] [PubMed] [Google Scholar]
- Brøsen K., Otton S. V., Gram L. F. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther. 1986 Nov;40(5):543–549. doi: 10.1038/clpt.1986.221. [DOI] [PubMed] [Google Scholar]
- Brøsen K., Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6--the source of the sparteine/debrisoquine oxidation polymorphism. Br J Clin Pharmacol. 1991 Jul;32(1):136–137. doi: 10.1111/j.1365-2125.1991.tb05630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brøsen K., Zeugin T., Meyer U. A. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther. 1991 Jun;49(6):609–617. doi: 10.1038/clpt.1991.77. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crewe H. K., Lennard M. S., Tucker G. T., Woods F. R., Haddock R. E. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol. 1992 Sep;34(3):262–265. doi: 10.1111/j.1365-2125.1992.tb04134.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl-Puustinen M. L., Lidén A., Alm C., Nordin C., Bertilsson L. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther. 1989 Jul;46(1):78–81. doi: 10.1038/clpt.1989.109. [DOI] [PubMed] [Google Scholar]
- Eichelbaum M., Gross A. S. The genetic polymorphism of debrisoquine/sparteine metabolism--clinical aspects. Pharmacol Ther. 1990;46(3):377–394. doi: 10.1016/0163-7258(90)90025-w. [DOI] [PubMed] [Google Scholar]
- Ged C., Umbenhauer D. R., Bellew T. M., Bork R. W., Srivastava P. K., Shinriki N., Lloyd R. S., Guengerich F. P. Characterization of cDNAs, mRNAs, and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4'-hydroxylase. Biochemistry. 1988 Sep 6;27(18):6929–6940. doi: 10.1021/bi00418a039. [DOI] [PubMed] [Google Scholar]
- Gram L. F. Effects of perphenazine on imipramine metabolism in man. Psychopharmacol Commun. 1975;1(2):165–175. [PubMed] [Google Scholar]
- Gram L. F. Metabolism of tricyclic antidepressants. A review. Dan Med Bull. 1974 Oct;21(6):218–231. [PubMed] [Google Scholar]
- Küpfer A., Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol. 1984;26(6):753–759. doi: 10.1007/BF00541938. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mahgoub A., Idle J. R., Dring L. G., Lancaster R., Smith R. L. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977 Sep 17;2(8038):584–586. doi: 10.1016/s0140-6736(77)91430-1. [DOI] [PubMed] [Google Scholar]
- Meier P. J., Mueller H. K., Dick B., Meyer U. A. Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. Gastroenterology. 1983 Sep;85(3):682–692. [PubMed] [Google Scholar]
- Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991 Jan-Feb;10(1):1–14. doi: 10.1089/dna.1991.10.1. [DOI] [PubMed] [Google Scholar]
- Otton S. V., Inaba T., Kalow W. Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci. 1984 Jan 2;34(1):73–80. doi: 10.1016/0024-3205(84)90332-1. [DOI] [PubMed] [Google Scholar]
- Sindrup S. H., Brøsen K., Gram L. F., Hallas J., Skjelbo E., Allen A., Allen G. D., Cooper S. M., Mellows G., Tasker T. C. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther. 1992 Mar;51(3):278–287. doi: 10.1038/clpt.1992.23. [DOI] [PubMed] [Google Scholar]
- Sindrup S. H., Brøsen K., Gram L. F. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit. 1990 Sep;12(5):445–449. doi: 10.1097/00007691-199009000-00007. [DOI] [PubMed] [Google Scholar]
- Skjelbo E., Brøsen K., Hallas J., Gram L. F. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther. 1991 Jan;49(1):18–23. doi: 10.1038/clpt.1991.4. [DOI] [PubMed] [Google Scholar]
- Vaughan D. A. Interaction of fluoxetine with tricyclic antidepressants. Am J Psychiatry. 1988 Nov;145(11):1478–1478. doi: 10.1176/ajp.145.11.1478b. [DOI] [PubMed] [Google Scholar]
- Ward S. A., Helsby N. A., Skjelbo E., Brøsen K., Gram L. F., Breckenridge A. M. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism--a panel study. Br J Clin Pharmacol. 1991 Jun;31(6):689–692. doi: 10.1111/j.1365-2125.1991.tb05594.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward S. A., Walle T., Walle U. K., Wilkinson G. R., Branch R. A. Propranolol's metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther. 1989 Jan;45(1):72–79. doi: 10.1038/clpt.1989.11. [DOI] [PubMed] [Google Scholar]
- Zanger U. M., Vilbois F., Hardwick J. P., Meyer U. A. Absence of hepatic cytochrome P450bufI causes genetically deficient debrisoquine oxidation in man. Biochemistry. 1988 Jul 26;27(15):5447–5454. doi: 10.1021/bi00415a010. [DOI] [PubMed] [Google Scholar]
- Zeugin T. B., Brosen K., Meyer U. A. Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid chromatographic method. Anal Biochem. 1990 Aug 15;189(1):99–102. doi: 10.1016/0003-2697(90)90052-b. [DOI] [PubMed] [Google Scholar]
