Abstract
Inhibition of human cytochrome P4502D6 (CYP2D6)-catalysed metabolism can lead to clinically significant alterations in pharmacokinetics. Since there is evidence that the selective serotonin reuptake inhibitor (SSRI) class of antidepressant drugs might inhibit CYP2D6, the effects of five SSRIs on human liver microsomal CYP2D6 activity were compared with each other and with three tricyclic antidepressant drugs. On a molar basis, paroxetine was the most potent of the SSRIs at inhibiting the CYP2D6-catalysed oxidation of sparteine (Ki = 0.15 microM), although fluoxetine (0.60 microM) and sertaline (0.70 microM) had Ki values in the same range. Fluvoxamine (8.2 microM) and citalopram (5.1 microM) also inhibited CYP2D6 activity. The major circulating metabolites of paroxetine in man produced negligible inhibition. In contrast, norfluoxetine the active metabolite of fluoxetine, was a potent CYP2D6 inhibitor (0.43 microM). CYP2D6 activity was also diminished by the tricyclic antidepressant drugs clomipramine (2.2 microM), desipramine (2.3 microM) and amitriptyline (4.0 microM). These findings suggest that compounds with SSRI activity are likely to interact with human CYP2D6 in vivo with the potential of causing drug interactions.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brøsen K., Gram L. F., Kragh-Sørensen P. Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine, and mephenytoin. Ther Drug Monit. 1991 Mar;13(2):177–182. doi: 10.1097/00007691-199103000-00015. [DOI] [PubMed] [Google Scholar]
- Brøsen K., Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6--the source of the sparteine/debrisoquine oxidation polymorphism. Br J Clin Pharmacol. 1991 Jul;32(1):136–137. doi: 10.1111/j.1365-2125.1991.tb05630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dechant K. L., Clissold S. P. Paroxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs. 1991 Feb;41(2):225–253. doi: 10.2165/00003495-199141020-00007. [DOI] [PubMed] [Google Scholar]
- Haddock R. E., Johnson A. M., Langley P. F., Nelson D. R., Pope J. A., Thomas D. R., Woods F. R. Metabolic pathway of paroxetine in animals and man and the comparative pharmacological properties of its metabolites. Acta Psychiatr Scand Suppl. 1989;350:24–26. doi: 10.1111/j.1600-0447.1989.tb07163.x. [DOI] [PubMed] [Google Scholar]
- Koe B. K., Weissman A., Welch W. M., Browne R. G. Sertraline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. J Pharmacol Exp Ther. 1983 Sep;226(3):686–700. [PubMed] [Google Scholar]
- Lennard M. S. Genetic polymorphism of sparteine/debrisoquine oxidation: a reappraisal. Pharmacol Toxicol. 1990 Oct;67(4):273–283. doi: 10.1111/j.1600-0773.1990.tb00830.x. [DOI] [PubMed] [Google Scholar]
- Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991 Jan-Feb;10(1):1–14. doi: 10.1089/dna.1991.10.1. [DOI] [PubMed] [Google Scholar]
- Niznik H. B., Tyndale R. F., Sallee F. R., Gonzalez F. J., Hardwick J. P., Inaba T., Kalow W. The dopamine transporter and cytochrome P45OIID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys. 1990 Feb 1;276(2):424–432. doi: 10.1016/0003-9861(90)90741-g. [DOI] [PubMed] [Google Scholar]
- Otton S. V., Crewe H. K., Lennard M. S., Tucker G. T., Woods H. F. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988 Oct;247(1):242–247. [PubMed] [Google Scholar]
- Otton S. V., Inaba T., Kalow W. Inhibition of sparteine oxidation in human liver by tricyclic antidepressants and other drugs. Life Sci. 1983 Feb 14;32(7):795–800. doi: 10.1016/0024-3205(83)90315-6. [DOI] [PubMed] [Google Scholar]
- Sindrup S. H., Brøsen K., Gram L. F., Hallas J., Skjelbo E., Allen A., Allen G. D., Cooper S. M., Mellows G., Tasker T. C. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther. 1992 Mar;51(3):278–287. doi: 10.1038/clpt.1992.23. [DOI] [PubMed] [Google Scholar]
- Westermeyer J. Fluoxetine-induced tricyclic toxicity: extent and duration. J Clin Pharmacol. 1991 Apr;31(4):388–392. doi: 10.1002/j.1552-4604.1991.tb03723.x. [DOI] [PubMed] [Google Scholar]
- von Bahr C., Spina E., Birgersson C., Ericsson O., Göransson M., Henthorn T., Sjöqvist F. Inhibition of desmethylimipramine 2-hydroxylation by drugs in human liver microsomes. Biochem Pharmacol. 1985 Jul 15;34(14):2501–2505. doi: 10.1016/0006-2952(85)90533-7. [DOI] [PubMed] [Google Scholar]