Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1992 Oct;34(4):302–308. doi: 10.1111/j.1365-2125.1992.tb05634.x

New models of focal cerebral ischaemia.

I Mhairi Macrae 1
PMCID: PMC1381409  PMID: 1457262

Abstract

1. Studies in animal models of stroke have provided an invaluable contribution to our current understanding of the pathogenesis of cerebral ischaemia. The strengths of stroke research in animals are: 1) the ability to control the severity, duration, location and cause of the ischaemia, variables which confound interpretation of human stroke data; 2) co-existent disease states and variations in cerebrovascular anatomy are avoided; and 3) physiological parameters such as blood pressure, blood gases, temperature and plasma glucose (all of which influence the magnitude of the ischaemic lesion) can be closely monitored and controlled. Taking all these things on board, it is possible to induce a consistent focal ischaemic lesion in animal models of stroke (e.g. the permanent occlusion of the middle cerebral artery (MCA) in the rat). This has resulted in the wide use of animal models for assessment of anti-ischaemic drug efficacy as well as for research into the pathophysiological sequelae of stroke. 2. Traditionally focal ischaemia models involved permanent occlusion of a major cerebral artery such as the MCA. However, since vessel occlusion is seldom permanent in human stroke more recent developments have incorporated reperfusion (following ischaemia) into the design of the animal model. This has been achieved by reversible occlusion of cerebral vessels using 1) intraluminal filaments; 2) microclips; 3) the abluminal application of potent and prolonged vasoconstrictors; or 4) the introduction of emboli into the cerebral circulation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
302

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albanese V., Tommasino C., Spadaro A., Tomasello F. A transbasisphenoidal approach for selective occlusion of the middle cerebral artery in rats. Experientia. 1980 Nov 15;36(11):1302–1304. doi: 10.1007/BF01969602. [DOI] [PubMed] [Google Scholar]
  2. Asano T., Ikegaki I., Suzuki Y., Satoh S., Shibuya M. Endothelin and the production of cerebral vasospasm in dogs. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1345–1351. doi: 10.1016/0006-291x(89)92258-4. [DOI] [PubMed] [Google Scholar]
  3. Bederson J. B., Pitts L. H., Germano S. M., Nishimura M. C., Davis R. L., Bartkowski H. M. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986 Nov-Dec;17(6):1304–1308. doi: 10.1161/01.str.17.6.1304. [DOI] [PubMed] [Google Scholar]
  4. Bederson J. B., Pitts L. H., Tsuji M., Nishimura M. C., Davis R. L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986 May-Jun;17(3):472–476. doi: 10.1161/01.str.17.3.472. [DOI] [PubMed] [Google Scholar]
  5. Bielenberg G. W., Beck T. The effects of dizocilpine (MK-801), phencyclidine, and nimodipine on infarct size 48 h after middle cerebral artery occlusion in the rat. Brain Res. 1991 Jun 28;552(2):338–342. doi: 10.1016/0006-8993(91)90101-z. [DOI] [PubMed] [Google Scholar]
  6. Brint S., Jacewicz M., Kiessling M., Tanabe J., Pulsinelli W. Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab. 1988 Aug;8(4):474–485. doi: 10.1038/jcbfm.1988.88. [DOI] [PubMed] [Google Scholar]
  7. Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
  8. Chen S. T., Hsu C. Y., Hogan E. L., Maricq H., Balentine J. D. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 1986 Jul-Aug;17(4):738–743. doi: 10.1161/01.str.17.4.738. [DOI] [PubMed] [Google Scholar]
  9. Dietrich W. D., Nakayama H., Watson B. D., Kanemitsu H. Morphological consequences of early reperfusion following thrombotic or mechanical occlusion of the rat middle cerebral artery. Acta Neuropathol. 1989;78(6):605–614. doi: 10.1007/BF00691287. [DOI] [PubMed] [Google Scholar]
  10. Duverger D., MacKenzie E. T. The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab. 1988 Aug;8(4):449–461. doi: 10.1038/jcbfm.1988.86. [DOI] [PubMed] [Google Scholar]
  11. Edvinsson L., Emson P., McCulloch J., Tatemoto K., Uddman R. Neuropeptide Y: immunocytochemical localization to and effect upon feline pial arteries and veins in vitro and in situ. Acta Physiol Scand. 1984 Oct;122(2):155–163. doi: 10.1111/j.1748-1716.1984.tb07493.x. [DOI] [PubMed] [Google Scholar]
  12. Futrell N., Watson B. D., Dietrich W. D., Prado R., Millikan C., Ginsberg M. D. A new model of embolic stroke produced by photochemical injury to the carotid artery in the rat. Ann Neurol. 1988 Mar;23(3):251–257. doi: 10.1002/ana.410230307. [DOI] [PubMed] [Google Scholar]
  13. Giaid A., Gibson S. J., Ibrahim B. N., Legon S., Bloom S. R., Yanagisawa M., Masaki T., Varndell I. M., Polak J. M. Endothelin 1, an endothelium-derived peptide, is expressed in neurons of the human spinal cord and dorsal root ganglia. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7634–7638. doi: 10.1073/pnas.86.19.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ginsberg M. D., Busto R. Rodent models of cerebral ischemia. Stroke. 1989 Dec;20(12):1627–1642. doi: 10.1161/01.str.20.12.1627. [DOI] [PubMed] [Google Scholar]
  15. Ginsberg M. D., Myers R. E. The topography of impaired microvascular perfusion in the primate brain following total circulatory arrest. Neurology. 1972 Oct;22(10):998–1011. doi: 10.1212/wnl.22.9.998. [DOI] [PubMed] [Google Scholar]
  16. Gotoh O., Mohamed A. A., McCulloch J., Graham D. I., Harper A. M., Teasdale G. M. Nimodipine and the haemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1986 Jun;6(3):321–331. doi: 10.1038/jcbfm.1986.55. [DOI] [PubMed] [Google Scholar]
  17. Kaplan B., Brint S., Tanabe J., Jacewicz M., Wang X. J., Pulsinelli W. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke. 1991 Aug;22(8):1032–1039. doi: 10.1161/01.str.22.8.1032. [DOI] [PubMed] [Google Scholar]
  18. Karpiak S. E., Tagliavia A., Wakade C. G. Animal models for the study of drugs in ischemic stroke. Annu Rev Pharmacol Toxicol. 1989;29:403–414. doi: 10.1146/annurev.pa.29.040189.002155. [DOI] [PubMed] [Google Scholar]
  19. Kowada M., Ames A., 3rd, Majno G., Wright R. L. Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit. J Neurosurg. 1968 Feb;28(2):150–157. doi: 10.3171/jns.1968.28.2.0150. [DOI] [PubMed] [Google Scholar]
  20. Kusumoto K., Mackay K. B., McCulloch J. The effect of the kappa-opioid receptor agonist CI-977 in a rat model of focal cerebral ischaemia. Brain Res. 1992 Mar 27;576(1):147–151. doi: 10.1016/0006-8993(92)90621-f. [DOI] [PubMed] [Google Scholar]
  21. Longa E. Z., Weinstein P. R., Carlson S., Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989 Jan;20(1):84–91. doi: 10.1161/01.str.20.1.84. [DOI] [PubMed] [Google Scholar]
  22. Macrae I., Robinson M., McAuley M., Reid J., McCulloch J. Effects of intracisternal endothelin-1 injection on blood flow to the lower brain stem. Eur J Pharmacol. 1991 Oct 2;203(1):85–91. doi: 10.1016/0014-2999(91)90794-q. [DOI] [PubMed] [Google Scholar]
  23. Miller J. D., Bullock R., Graham D. I., Chen M. H., Teasdale G. M. Ischemic brain damage in a model of acute subdural hematoma. Neurosurgery. 1990 Sep;27(3):433–439. doi: 10.1097/00006123-199009000-00016. [DOI] [PubMed] [Google Scholar]
  24. Mima T., Yanagisawa M., Shigeno T., Saito A., Goto K., Takakura K., Masaki T. Endothelin acts in feline and canine cerebral arteries from the adventitial side. Stroke. 1989 Nov;20(11):1553–1556. doi: 10.1161/01.str.20.11.1553. [DOI] [PubMed] [Google Scholar]
  25. Nagasawa H., Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke. 1989 Aug;20(8):1037–1043. doi: 10.1161/01.str.20.8.1037. [DOI] [PubMed] [Google Scholar]
  26. Osborne K. A., Shigeno T., Balarsky A. M., Ford I., McCulloch J., Teasdale G. M., Graham D. I. Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia. J Neurol Neurosurg Psychiatry. 1987 Apr;50(4):402–410. doi: 10.1136/jnnp.50.4.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Papadopoulos S. M., Chandler W. F., Salamat M. S., Topol E. J., Sackellares J. C. Recombinant human tissue-type plasminogen activator therapy in acute thromboembolic stroke. J Neurosurg. 1987 Sep;67(3):394–398. doi: 10.3171/jns.1987.67.3.0394. [DOI] [PubMed] [Google Scholar]
  28. Park C. K., Nehls D. G., Graham D. I., Teasdale G. M., McCulloch J. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol. 1988 Oct;24(4):543–551. doi: 10.1002/ana.410240411. [DOI] [PubMed] [Google Scholar]
  29. Pulsinelli W. A., Brierley J. B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979 May-Jun;10(3):267–272. doi: 10.1161/01.str.10.3.267. [DOI] [PubMed] [Google Scholar]
  30. Robinson M. J., Macrae I. M., Todd M., Reid J. L., McCulloch J. Reduction of local cerebral blood flow to pathological levels by endothelin-1 applied to the middle cerebral artery in the rat. Neurosci Lett. 1990 Oct 16;118(2):269–272. doi: 10.1016/0304-3940(90)90644-o. [DOI] [PubMed] [Google Scholar]
  31. Robinson M. J., McCulloch J. Contractile responses to endothelin in feline cortical vessels in situ. J Cereb Blood Flow Metab. 1990 Mar;10(2):285–289. doi: 10.1038/jcbfm.1990.46. [DOI] [PubMed] [Google Scholar]
  32. Robinson R. G., Shoemaker W. J., Schlumpf M., Valk T., Bloom F. E. Effect of experimental cerebral infarction in rat brain on catecholamines and behaviour. Nature. 1975 May 22;255(5506):332–334. doi: 10.1038/255332a0. [DOI] [PubMed] [Google Scholar]
  33. Saito I., Segawa H., Shiokawa Y., Taniguchi M., Tsutsumi K. Middle cerebral artery occlusion: correlation of computed tomography and angiography with clinical outcome. Stroke. 1987 Sep-Oct;18(5):863–868. doi: 10.1161/01.str.18.5.863. [DOI] [PubMed] [Google Scholar]
  34. Shigeno T., McCulloch J., Graham D. I., Mendelow A. D., Teasdale G. M. Pure cortical ischemia versus striatal ischemia. Circulatory, metabolic, and neuropathologic consequences. Surg Neurol. 1985 Jul;24(1):47–51. doi: 10.1016/0090-3019(85)90063-1. [DOI] [PubMed] [Google Scholar]
  35. Shigeno T., Teasdale G. M., McCulloch J., Graham D. I. Recirculation model following MCA occlusion in rats. Cerebral blood flow, cerebrovascular permeability, and brain edema. J Neurosurg. 1985 Aug;63(2):272–277. doi: 10.3171/jns.1985.63.2.0272. [DOI] [PubMed] [Google Scholar]
  36. Smith M. L., Bendek G., Dahlgren N., Rosén I., Wieloch T., Siesjö B. K. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand. 1984 Jun;69(6):385–401. doi: 10.1111/j.1600-0404.1984.tb07822.x. [DOI] [PubMed] [Google Scholar]
  37. Tamura A., Asano T., Sano K. Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke. 1980 Sep-Oct;11(5):487–493. doi: 10.1161/01.str.11.5.487. [DOI] [PubMed] [Google Scholar]
  38. Tamura A., Graham D. I., McCulloch J., Teasdale G. M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53–60. doi: 10.1038/jcbfm.1981.6. [DOI] [PubMed] [Google Scholar]
  39. Tamura A., Graham D. I., McCulloch J., Teasdale G. M. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):61–69. doi: 10.1038/jcbfm.1981.7. [DOI] [PubMed] [Google Scholar]
  40. Waltz A. G. Clinical relevance of models of cerebral ischemia. Stroke. 1979 Mar-Apr;10(2):211–213. doi: 10.1161/01.str.10.2.211. [DOI] [PubMed] [Google Scholar]
  41. Watson B. D., Dietrich W. D., Busto R., Wachtel M. S., Ginsberg M. D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985 May;17(5):497–504. doi: 10.1002/ana.410170513. [DOI] [PubMed] [Google Scholar]
  42. Yamori Y., Horie R., Handa H., Sato M., Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke. 1976 Jan-Feb;7(1):46–53. doi: 10.1161/01.str.7.1.46. [DOI] [PubMed] [Google Scholar]
  43. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  44. Yoshimoto S., Ishizaki Y., Kurihara H., Sasaki T., Yoshizumi M., Yanagisawa M., Yazaki Y., Masaki T., Takakura K., Murota S. Cerebral microvessel endothelium is producing endothelin. Brain Res. 1990 Feb 5;508(2):283–285. doi: 10.1016/0006-8993(90)90407-3. [DOI] [PubMed] [Google Scholar]
  45. Zivin J. A., DeGirolami U., Kochhar A., Lyden P. D., Mazzarella V., Hemenway C. C., Henry M. E. A model for quantitative evaluation of embolic stroke therapy. Brain Res. 1987 Dec 1;435(1-2):305–309. doi: 10.1016/0006-8993(87)91613-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES