Abstract
Carriers of beta amino acids and imino acids in the small intestine of rabbits and guinea pigs are chloride dependent, and a cotransport of chloride, sodium, and 2-methyl-aminoisobutyric acid has been shown. This study examines the chloride dependence of amino acid transport in the human small intestine. The steady state tissue uptake of amino acids, given as the ratio between substrate concentration in intracellular and extracellular water after 35 minutes incubation at 37 degrees C, was determined in mucosal biopsy specimens from the duodenum of patients undergoing diagnostic upper endoscopy and compared using one way analysis of variance. Uptake of leucine and alpha-methyl-D-glucoside in the duodenum and the distal ileum did not differ. The accumulation of all substrates was sodium dependent. In the absence of mucosal chloride the uptake of taurine, glycine, and 2-methyl-aminoisobutyric acid was significantly reduced while that of leucine and alpha-methyl-D-glucoside was unaffected and the reduction of beta alanine uptake not statistically significant. Uptake of 2-methyl-aminoisobutyric acid and proline showed mutual inhibition. Leucine did not reduce uptake of the beta amino acids. In conclusion, chloride dependent transport processes for 2-methyl-amino-isobutyric acid, taurine, and glycine are present in the human small intestine.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnard J. A., Thaxter S., Kikuchi K., Ghishan F. K. Taurine transport by rat intestine. Am J Physiol. 1988 Mar;254(3 Pt 1):G334–G338. doi: 10.1152/ajpgi.1988.254.3.G334. [DOI] [PubMed] [Google Scholar]
- Bogé G., Rigal A. A chloride requirement for Na+-dependent amino-acid transport by brush border membrane vesicles isolated from the intestine of a Mediterranean teleost (Boops salpa). Biochim Biophys Acta. 1981 Dec 7;649(2):455–461. doi: 10.1016/0005-2736(81)90436-3. [DOI] [PubMed] [Google Scholar]
- CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
- Chamberlin M. E., Strange K. Anisosmotic cell volume regulation: a comparative view. Am J Physiol. 1989 Aug;257(2 Pt 1):C159–C173. doi: 10.1152/ajpcell.1989.257.2.C159. [DOI] [PubMed] [Google Scholar]
- Harig J. M., Barry J. A., Rajendran V. M., Soergel K. H., Ramaswamy K. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles. Am J Physiol. 1989 Mar;256(3 Pt 1):G618–G623. doi: 10.1152/ajpgi.1989.256.3.G618. [DOI] [PubMed] [Google Scholar]
- Jessen H., Sheikh M. I. Renal transport of taurine in luminal membrane vesicles from rabbit proximal tubule. Biochim Biophys Acta. 1991 May 7;1064(2):189–198. doi: 10.1016/0005-2736(91)90301-n. [DOI] [PubMed] [Google Scholar]
- Jessen H., Sheikh M. I. Stoichiometric studies of beta-alanine transporters in rabbit proximal tubule. Biochem J. 1991 Aug 1;277(Pt 3):891–894. doi: 10.1042/bj2770891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimmich G. A. Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport. J Membr Biol. 1990 Mar;114(1):1–27. doi: 10.1007/BF01869381. [DOI] [PubMed] [Google Scholar]
- Lambert I. H., Hoffmann E. K. Regulation of taurine transport in Ehrlich ascites tumor cells. J Membr Biol. 1993 Jan;131(1):67–79. doi: 10.1007/BF02258535. [DOI] [PubMed] [Google Scholar]
- MCCARTHY C. F., BORLAND J. L., Jr, LYNCH H. J., Jr, OWEN E. E., TYOR M. P. DEFECTIVE UPTAKE OF BASIC AMINO ACIDS AND L-CYSTINE BY INTESTINAL MUCOSA OF PATIENTS WITH CYSTINURIA. J Clin Invest. 1964 Aug;43:1518–1524. doi: 10.1172/JCI105028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munck B. G., Schultz S. G. Lysine transport across isolated rabbit ileum. J Gen Physiol. 1969 Feb;53(2):157–182. doi: 10.1085/jgp.53.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munck B. G. Transport of imino acids and non-alpha-amino acids across the brush-border membrane of the rabbit ileum. J Membr Biol. 1985;83(1-2):15–24. doi: 10.1007/BF01868734. [DOI] [PubMed] [Google Scholar]
- Munck L. K. Cotransport of 2-methyl-aminoisobutyric acid and chloride in rabbit small intestine. Am J Physiol. 1993 Nov;265(5 Pt 1):G979–G986. doi: 10.1152/ajpgi.1993.265.5.G979. [DOI] [PubMed] [Google Scholar]
- Munck L. K., Munck B. G. Chloride-dependence of amino acid transport in rabbit ileum. Biochim Biophys Acta. 1990 Aug 10;1027(1):17–20. doi: 10.1016/0005-2736(90)90041-l. [DOI] [PubMed] [Google Scholar]
- Munck L. K., Munck B. G. Chloride-dependent intestinal transport of imino and beta-amino acids in the guinea pig and rat. Am J Physiol. 1994 Mar;266(3 Pt 2):R997–1007. doi: 10.1152/ajpregu.1994.266.3.R997. [DOI] [PubMed] [Google Scholar]
- Munck L. K., Munck B. G. Distinction between chloride-dependent transport systems for taurine and beta-alanine in rabbit ileum. Am J Physiol. 1992 Apr;262(4 Pt 1):G609–G615. doi: 10.1152/ajpgi.1992.262.4.G609. [DOI] [PubMed] [Google Scholar]
- Paterson J. Y., Sepúlveda F. V., Smith M. W. Two-carrier influx of neutral amino acids into rabbit ileal mucosa. J Physiol. 1979 Jul;292:339–350. doi: 10.1113/jphysiol.1979.sp012854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens B. R., Ross H. J., Wright E. M. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol. 1982;66(3):213–225. doi: 10.1007/BF01868496. [DOI] [PubMed] [Google Scholar]
- Stevens B. R. Vertebrate intestine apical membrane mechanisms of organic nutrient transport. Am J Physiol. 1992 Sep;263(3 Pt 2):R458–R463. doi: 10.1152/ajpregu.1992.263.3.R458. [DOI] [PubMed] [Google Scholar]
- THIER S. O., SEGAL S., FOX M., BLAIR A., ROSENBERG L. E. CYSTINURIA: DEFECTIVE INTESTINAL TRANSPORT OF DIBASIC AMINO ACIDS AND CYSTINE. J Clin Invest. 1965 Mar;44:442–448. doi: 10.1172/JCI105157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thwaites D. T., McEwan G. T., Brown C. D., Hirst B. H., Simmons N. L. Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers. J Biol Chem. 1993 Sep 5;268(25):18438–18441. [PubMed] [Google Scholar]
- Tiruppathi C., Brandsch M., Miyamoto Y., Ganapathy V., Leibach F. H. Constitutive expression of the taurine transporter in a human colon carcinoma cell line. Am J Physiol. 1992 Nov;263(5 Pt 1):G625–G631. doi: 10.1152/ajpgi.1992.263.5.G625. [DOI] [PubMed] [Google Scholar]
- Turner R. J. beta-Amino acid transport across the renal brush-border membrane is coupled to both Na and Cl. J Biol Chem. 1986 Dec 5;261(34):16060–16066. [PubMed] [Google Scholar]
- Uchida S., Nakanishi T., Kwon H. M., Preston A. S., Handler J. S. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine. J Clin Invest. 1991 Aug;88(2):656–662. doi: 10.1172/JCI115350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VIDAVER G. A. MUCATE INHIBITION OF GLYCINE ENTRY INTO PIGEON RED CELLS. Biochemistry. 1964 Jun;3:799–803. doi: 10.1021/bi00894a012. [DOI] [PubMed] [Google Scholar]
- Van Winkle L. J. Amino acid transport in developing animal oocytes and early conceptuses. Biochim Biophys Acta. 1988 Feb 24;947(1):173–208. doi: 10.1016/0304-4157(88)90024-x. [DOI] [PubMed] [Google Scholar]
- Wolff N. A., Kinne R. Taurine transport by rabbit kidney brush-border membranes: coupling to sodium, chloride, and the membrane potential. J Membr Biol. 1988 May;102(2):131–139. doi: 10.1007/BF01870451. [DOI] [PubMed] [Google Scholar]
