Skip to main content
Gut logoLink to Gut
. 1995 Jul;37(1):140–143. doi: 10.1136/gut.37.1.140

Plasma and hepatic carnitine and coenzyme A pools in a patient with fatal, valproate induced hepatotoxicity.

S Krähenbühl 1, G Mang 1, H Kupferschmidt 1, P J Meier 1, M Krause 1
PMCID: PMC1382786  PMID: 7672665

Abstract

Reduced hepatic mitochondrial beta-oxidation and changes in the plasma carnitine pool are important biochemical findings in valproate induced liver toxicity. The carnitine pools in plasma and liver and the liver coenzyme A (CoA) pool in a patient with fatal, valproate induced hepatotoxicity were measured. In plasma and liver the free and total carnitine contents were decreased, whereas the ratios short chain acylcarnitine/total acid soluble carnitine were increased. The long chain acylcarnitine content was unchanged in plasma, and increased in liver. The total CoA content in liver was decreased by 84%. This was due to reduced concentrations of CoASH, acetyl-CoA, and long chain acyl-CoA whereas the concentrations of succinyl-CoA and propionyl-CoA were both increased. The good agreement between the plasma and liver carnitine pools reflects the close relation between these two pools. The observed decrease in the hepatic CoASH and total CoA content has so far not been reported in humans with valproate induced hepatotoxicity and may be functionally significant.

Full text

PDF
140

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker C. M., Harris R. A. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys. 1983 Jun;223(2):381–392. doi: 10.1016/0003-9861(83)90602-1. [DOI] [PubMed] [Google Scholar]
  2. Bioulac-Sage P., Parrot-Roulaud F., Mazat J. P., Lamireau T., Coquet M., Sandler B., Demarquez J. L., Cormier V., Munnich A., Carré M. Fatal neonatal liver failure and mitochondrial cytopathy (oxidative phosphorylation deficiency): a light and electron microscopic study of the liver. Hepatology. 1993 Oct;18(4):839–846. doi: 10.1002/hep.1840180414. [DOI] [PubMed] [Google Scholar]
  3. Brass E. P., Hoppel C. L. Carnitine metabolism in the fasting rat. J Biol Chem. 1978 Apr 25;253(8):2688–2693. [PubMed] [Google Scholar]
  4. Böhles H., Richter K., Wagner-Thiessen E., Schäfer H. Decreased serum carnitine in valproate induced Reye syndrome. Eur J Pediatr. 1982 Nov;139(3):185–186. doi: 10.1007/BF01377353. [DOI] [PubMed] [Google Scholar]
  5. Cederblad G., Carlin J. I., Constantin-Teodosiu D., Harper P., Hultman E. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle. Anal Biochem. 1990 Mar;185(2):274–278. doi: 10.1016/0003-2697(90)90292-h. [DOI] [PubMed] [Google Scholar]
  6. Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
  7. Chalmers R. A., Roe C. R., Stacey T. E., Hoppel C. L. Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res. 1984 Dec;18(12):1325–1328. doi: 10.1203/00006450-198412000-00021. [DOI] [PubMed] [Google Scholar]
  8. Deschamps D., Fisch C., Fromenty B., Berson A., Degott C., Pessayre D. Inhibition by salicylic acid of the activation and thus oxidation of long chain fatty acids. Possible role in the development of Reye's syndrome. J Pharmacol Exp Ther. 1991 Nov;259(2):894–904. [PubMed] [Google Scholar]
  9. Dreifuss F. E., Santilli N., Langer D. H., Sweeney K. P., Moline K. A., Menander K. B. Valproic acid hepatic fatalities: a retrospective review. Neurology. 1987 Mar;37(3):379–385. doi: 10.1212/wnl.37.3.379. [DOI] [PubMed] [Google Scholar]
  10. Fuller R. K., Hoppel C. L. Elevated plasma carnitine in hepatic cirrhosis. Hepatology. 1983 Jul-Aug;3(4):554–558. doi: 10.1002/hep.1840030413. [DOI] [PubMed] [Google Scholar]
  11. Fuller R. K., Hoppel C. L. Plasma carnitine in alcoholism. Alcohol Clin Exp Res. 1988 Oct;12(5):639–642. doi: 10.1111/j.1530-0277.1988.tb00256.x. [DOI] [PubMed] [Google Scholar]
  12. Krahenbuhl S., Brass E. P. Fuel homeostasis and carnitine metabolism in rats with secondary biliary cirrhosis. Hepatology. 1991 Nov;14(5):927–934. doi: 10.1002/hep.1840140528. [DOI] [PubMed] [Google Scholar]
  13. Krahenbuhl S., Brass E. P. Inhibition of hepatic propionyl-CoA synthetase activity by organic acids. Reversal of propionate inhibition of pyruvate metabolism. 1991 Mar 15-Apr 1Biochem Pharmacol. 41(6-7):1015–1023. doi: 10.1016/0006-2952(91)90209-n. [DOI] [PubMed] [Google Scholar]
  14. Krahenbuhl S., Weber F. L., Jr, Brass E. P. Decreased hepatic glycogen content and accelerated response to starvation in rats with carbon tetrachloride-induced cirrhosis. Hepatology. 1991 Dec;14(6):1189–1195. [PubMed] [Google Scholar]
  15. Krähenbühl S., Talos C., Reichen J. Mechanisms of impaired hepatic fatty acid metabolism in rats with long-term bile duct ligation. Hepatology. 1994 May;19(5):1272–1281. doi: 10.1002/hep.1840190528. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laub M. C., Paetzke-Brunner I., Jaeger G. Serum carnitine during valproic acid therapy. Epilepsia. 1986 Sep-Oct;27(5):559–562. doi: 10.1111/j.1528-1157.1986.tb03584.x. [DOI] [PubMed] [Google Scholar]
  18. MEUNIER H., CARRAZ G., NEUNIER Y., EYMARD P., AIMARD M. [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie. 1963 Mar-Apr;18:435–438. [PubMed] [Google Scholar]
  19. Matsuda I., Ohtani Y., Ninomiya N. Renal handling of carnitine in children with carnitine deficiency and hyperammonemia associated with valproate therapy. J Pediatr. 1986 Jul;109(1):131–134. doi: 10.1016/s0022-3476(86)80592-3. [DOI] [PubMed] [Google Scholar]
  20. Murakami K., Sugimoto T., Nishida N., Kobayashi Y., Kuhara T., Matsumoto I. Abnormal metabolism of carnitine and valproate in a case of acute encephalopathy during chronic valproate therapy. Brain Dev. 1992 May;14(3):178–181. doi: 10.1016/s0387-7604(12)80261-0. [DOI] [PubMed] [Google Scholar]
  21. Murakami K., Sugimoto T., Nishida N., Woo M., Araki A., Kobayashi Y., Sakane Y. Carnitine metabolism and morphometric change of liver mitochondria in valproate-treated rats. Neuropediatrics. 1990 Nov;21(4):187–190. doi: 10.1055/s-2008-1071492. [DOI] [PubMed] [Google Scholar]
  22. Murphy J. V., Marquardt K. M., Shug A. L. Valproic acid associated abnormalities of carnitine metabolism. Lancet. 1985 Apr 6;1(8432):820–821. doi: 10.1016/s0140-6736(85)91481-3. [DOI] [PubMed] [Google Scholar]
  23. Palombo J. D., Borum P. R., Jenkins R. L., Trey C., Bistrian B. R. Blood carnitine status after orthotopic liver transplantation in patients with end-stage liver disease. Am J Clin Nutr. 1989 Sep;50(3):504–507. doi: 10.1093/ajcn/50.3.504. [DOI] [PubMed] [Google Scholar]
  24. Ponchaut S., Veitch K. Valproate and mitochondria. Biochem Pharmacol. 1993 Jul 20;46(2):199–204. doi: 10.1016/0006-2952(93)90404-k. [DOI] [PubMed] [Google Scholar]
  25. Ponchaut S., van Hoof F., Veitch K. In vitro effects of valproate and valproate metabolites on mitochondrial oxidations. Relevance of CoA sequestration to the observed inhibitions. Biochem Pharmacol. 1992 Jun 9;43(11):2435–2442. doi: 10.1016/0006-2952(92)90324-c. [DOI] [PubMed] [Google Scholar]
  26. Rozas I., Camiña M. F., Paz J. M., Alonso C., Castro-Gago M., Rodriguez-Segade S. Effects of acute valproate administration on carnitine metabolism in mouse serum and tissues. Biochem Pharmacol. 1990 Jan 1;39(1):181–185. doi: 10.1016/0006-2952(90)90663-6. [DOI] [PubMed] [Google Scholar]
  27. Rudman D., Sewell C. W., Ansley J. D. Deficiency of carnitine in cachectic cirrhotic patients. J Clin Invest. 1977 Sep;60(3):716–723. doi: 10.1172/JCI108824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sandor A., Cseko J., Kispal G., Alkonyi I. Surplus acylcarnitines in the plasma of starved rats derive from the liver. J Biol Chem. 1990 Dec 25;265(36):22313–22316. [PubMed] [Google Scholar]
  29. Stanley C. A., Berry G. T., Bennett M. J., Willi S. M., Treem W. R., Hale D. E. Renal handling of carnitine in secondary carnitine deficiency disorders. Pediatr Res. 1993 Jul;34(1):89–97. doi: 10.1203/00006450-199307000-00021. [DOI] [PubMed] [Google Scholar]
  30. Stanley C. A. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr. 1987;34:59–88. [PubMed] [Google Scholar]
  31. Sugimoto T., Araki A., Nishida N., Sakane Y., Woo M., Takeuchi T., Kobayashi Y. Hepatotoxicity in rat following administration of valproic acid: effect of L-carnitine supplementation. Epilepsia. 1987 Jul-Aug;28(4):373–377. doi: 10.1111/j.1528-1157.1987.tb03660.x. [DOI] [PubMed] [Google Scholar]
  32. Sugimoto T., Woo M., Nishida N., Takeuchi T., Sakane Y., Kobayashi Y. Hepatotoxicity in rat following administration of valproic acid. Epilepsia. 1987 Mar-Apr;28(2):142–146. doi: 10.1111/j.1528-1157.1987.tb03640.x. [DOI] [PubMed] [Google Scholar]
  33. Tein I., DiMauro S., Xie Z. W., De Vivo D. C. Valproic acid impairs carnitine uptake in cultured human skin fibroblasts. An in vitro model for the pathogenesis of valproic acid-associated carnitine deficiency. Pediatr Res. 1993 Sep;34(3):281–287. doi: 10.1203/00006450-199309000-00008. [DOI] [PubMed] [Google Scholar]
  34. Thurston J. H., Carroll J. E., Hauhart R. E., Schiro J. A. A single therapeutic dose of valproate affects liver carbohydrate, fat, adenylate, amino acid, coenzyme A, and carnitine metabolism in infant mice: possible clinical significance. Life Sci. 1985 Apr 29;36(17):1643–1651. doi: 10.1016/0024-3205(85)90367-4. [DOI] [PubMed] [Google Scholar]
  35. Thurston J. H., Hauhart R. E. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Pediatr Res. 1992 Apr;31(4 Pt 1):419–423. doi: 10.1203/00006450-199204000-00023. [DOI] [PubMed] [Google Scholar]
  36. Triggs W. J., Bohan T. P., Lin S. N., Willmore L. J. Valproate-induced coma with ketosis and carnitine insufficiency. Arch Neurol. 1990 Oct;47(10):1131–1133. doi: 10.1001/archneur.1990.00530100101021. [DOI] [PubMed] [Google Scholar]
  37. Turnbull D. M., Dick D. J., Wilson L., Sherratt H. S., Alberti K. G. Valproate causes metabolic disturbance in normal man. J Neurol Neurosurg Psychiatry. 1986 Apr;49(4):405–410. doi: 10.1136/jnnp.49.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zaccara G., Messori A., Moroni F. Clinical pharmacokinetics of valproic acid--1988. Clin Pharmacokinet. 1988 Dec;15(6):367–389. doi: 10.2165/00003088-198815060-00002. [DOI] [PubMed] [Google Scholar]
  39. Zafrani E. S., Berthelot P. Sodium valproate in the induction of unusual hepatotoxicity. Hepatology. 1982 Sep-Oct;2(5):648–649. doi: 10.1002/hep.1840020520. [DOI] [PubMed] [Google Scholar]
  40. Zimmerman H. J., Ishak K. G. Valproate-induced hepatic injury: analyses of 23 fatal cases. Hepatology. 1982 Sep-Oct;2(5):591–597. doi: 10.1002/hep.1840020513. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES