Abstract
Little is known about the pathophysiological factors that determine the clinical severity of acute pancreatitis. Because impairment of pancreatic circulation and oxygenation is associated with greater disease severity and morphological damage in experimental pancreatitis it has been suggested that various vasoactive mediators might participate in the progression from the oedematous to the necrotising variety of the disease. This study used an animal model of acute pancreatitis induced by intravenous caeruleint (10 micrograms/kg/h for up to six hours), which does not entail either haemorrhage or significant necrosis of the pancreas. This study considered whether the administration or the inhibition of either nitric oxide, bradykinin, or adrenergic mediators can convert this mild variety into haemorrhagic and necrotising pancreatitis. Neither nitric oxide nor catecholamines were involved in the progression from oedematous to haemorrhagic pancreatitis. Their substitution, activation, and inhibition all failed to change the severity of the disease process. Bradykinin alone seemed to be critically involved in the pathogenesis of pancreatic haemorrhage and necrosis. However, the inhibition of bradykinin and not its activation or substitution increased the severity of the disease.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Elsässer H. P., Haake T., Grimmig M., Adler G., Kern H. F. Repetitive cerulein-induced pancreatitis and pancreatic fibrosis in the rat. Pancreas. 1992;7(3):385–390. doi: 10.1097/00006676-199205000-00017. [DOI] [PubMed] [Google Scholar]
- Gress T. M., Arnold R., Adler G. Structural alterations of pancreatic microvasculature in cerulein-induced pancreatitis in the rat. Res Exp Med (Berl) 1990;190(6):401–412. doi: 10.1007/BF00000046. [DOI] [PubMed] [Google Scholar]
- Griesbacher T., Lembeck F. Effects of the bradykinin antagonist, HOE 140, in experimental acute pancreatitis. Br J Pharmacol. 1992 Oct;107(2):356–360. doi: 10.1111/j.1476-5381.1992.tb12751.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey M. H., Wedgwood K. R., Reber H. A. Vasoactive drugs, microvascular permeability, and hemorrhagic pancreatitis in cats. Gastroenterology. 1987 Dec;93(6):1296–1300. doi: 10.1016/0016-5085(87)90258-7. [DOI] [PubMed] [Google Scholar]
- Hernández C. A., Lerch M. M. Sphincter stenosis and gallstone migration through the biliary tract. Lancet. 1993 May 29;341(8857):1371–1373. doi: 10.1016/0140-6736(93)90942-a. [DOI] [PubMed] [Google Scholar]
- Karanjia N. D., Widdison A. L., Lutrin F. J., Chang Y. B., Reber H. A. The antiinflammatory effect of dopamine in alcoholic hemorrhagic pancreatitis in cats. Studies on the receptors and mechanisms of action. Gastroenterology. 1991 Dec;101(6):1635–1641. doi: 10.1016/0016-5085(91)90402-7. [DOI] [PubMed] [Google Scholar]
- Kellermeyer R. W., Graham R. C., Jr Kinins--possible physiologic and pathologic roles in man. N Engl J Med. 1968 Oct 17;279(16):859–concl. doi: 10.1056/NEJM196810172791605. [DOI] [PubMed] [Google Scholar]
- Klar E., Messmer K., Warshaw A. L., Herfarth C. Pancreatic ischaemia in experimental acute pancreatitis: mechanism, significance and therapy. Br J Surg. 1990 Nov;77(11):1205–1210. doi: 10.1002/bjs.1800771104. [DOI] [PubMed] [Google Scholar]
- Konturek S. J., Bilski J., Konturek P. K., Cieszkowski M., Pawlik W. Role of endogenous nitric oxide in the control of canine pancreatic secretion and blood flow. Gastroenterology. 1993 Mar;104(3):896–902. doi: 10.1016/0016-5085(93)91028-g. [DOI] [PubMed] [Google Scholar]
- Kubes P., Granger D. N. Nitric oxide modulates microvascular permeability. Am J Physiol. 1992 Feb;262(2 Pt 2):H611–H615. doi: 10.1152/ajpheart.1992.262.2.H611. [DOI] [PubMed] [Google Scholar]
- Kusterer K., Enghofer M., Zendler S., Blöchle C., Usadel K. H. Microcirculatory changes in sodium taurocholate-induced pancreatitis in rats. Am J Physiol. 1991 Feb;260(2 Pt 1):G346–G351. doi: 10.1152/ajpgi.1991.260.2.G346. [DOI] [PubMed] [Google Scholar]
- Kyogoku T., Manabe T., Tobe T. Role of ischemia in acute pancreatitis. Hemorrhagic shock converts edematous pancreatitis to hemorrhagic pancreatitis in rats. Dig Dis Sci. 1992 Sep;37(9):1409–1417. doi: 10.1007/BF01296012. [DOI] [PubMed] [Google Scholar]
- Lampel M., Kern H. F. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol. 1977 Mar 11;373(2):97–117. doi: 10.1007/BF00432156. [DOI] [PubMed] [Google Scholar]
- Lasson A., Ohlsson K. Changes in the kallikrein kinin system during acute pancreatitis in man. Thromb Res. 1984 Jul 1;35(1):27–41. doi: 10.1016/0049-3848(84)90310-4. [DOI] [PubMed] [Google Scholar]
- Lerch M. M., Hoppe-Seyler P., Gerok W. Origin and development of exocrine pancreatic insufficiency in experimental renal failure. Gut. 1994 Mar;35(3):401–407. doi: 10.1136/gut.35.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerch M. M., Saluja A. K., Dawra R., Ramaraò P., Saluja M., Steer M. L. Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology. 1992 Jul;103(1):205–213. doi: 10.1016/0016-5085(92)91114-j. [DOI] [PubMed] [Google Scholar]
- Lerch M. M., Saluja A. K., Dawra R., Saluja M., Steer M. L. The effect of chloroquine administration on two experimental models of acute pancreatitis. Gastroenterology. 1993 Jun;104(6):1768–1779. doi: 10.1016/0016-5085(93)90658-y. [DOI] [PubMed] [Google Scholar]
- McEntee G., Leahy A., Cottell D., Dervan P., McGeeney K., Fitzpatrick J. M. Three-dimensional morphological study of the pancreatic microvasculature in caerulein-induced experimental pancreatitis. Br J Surg. 1989 Aug;76(8):853–855. doi: 10.1002/bjs.1800760830. [DOI] [PubMed] [Google Scholar]
- Nugent F. W., Atendido W. A., Bulan M. B., MacDonald A. J. Kininase activity in experimental pancreatitis. Nature. 1966 Jul 9;211(5045):207–208. doi: 10.1038/211207a0. [DOI] [PubMed] [Google Scholar]
- Saluja A., Hashimoto S., Saluja M., Powers R. E., Meldolesi J., Steer M. L. Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol. 1987 Oct;253(4 Pt 1):G508–G516. doi: 10.1152/ajpgi.1987.253.4.G508. [DOI] [PubMed] [Google Scholar]
- Saluja A., Saito I., Saluja M., Houlihan M. J., Powers R. E., Meldolesi J., Steer M. In vivo rat pancreatic acinar cell function during supramaximal stimulation with caerulein. Am J Physiol. 1985 Dec;249(6 Pt 1):G702–G710. doi: 10.1152/ajpgi.1985.249.6.G702. [DOI] [PubMed] [Google Scholar]
- Shimizu I., Wada S., Okahisa T., Kamamura M., Yano M., Kodaira T., Nishino T., Shima K., Ito S. Radioimmunoreactive plasma bradykinin levels and histological changes during the course of cerulein-induced pancreatitis in rats. Pancreas. 1993 Mar;8(2):220–225. doi: 10.1097/00006676-199303000-00013. [DOI] [PubMed] [Google Scholar]
- Sweiry J. H., Mann G. E. Pancreatic microvascular permeability in caerulein-induced acute pancreatitis. Am J Physiol. 1991 Oct;261(4 Pt 1):G685–G692. doi: 10.1152/ajpgi.1991.261.4.G685. [DOI] [PubMed] [Google Scholar]
- Wilson C., Imrie C. W., Carter D. C. Fatal acute pancreatitis. Gut. 1988 Jun;29(6):782–788. doi: 10.1136/gut.29.6.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wirth K., Hock F. J., Albus U., Linz W., Alpermann H. G., Anagnostopoulos H., Henk S., Breipohl G., König W., Knolle J. Hoe 140 a new potent and long acting bradykinin-antagonist: in vivo studies. Br J Pharmacol. 1991 Mar;102(3):774–777. doi: 10.1111/j.1476-5381.1991.tb12249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi H., Kimura T., Nawata H. Does stress play a role in the development of severe pancreatitis in rats? Gastroenterology. 1990 Jun;98(6):1682–1688. doi: 10.1016/0016-5085(90)91107-h. [DOI] [PubMed] [Google Scholar]



