Abstract
Immunisation against the mycobacterial heat shock protein (hsp-65) has been proposed to lead to production of autoantibodies against human lactoferrin. Such antibodies occur in ulcerative colitis and in primary sclerosing cholangitis. This study analysed the distribution of hsp-65 and lactoferrin in biopsy specimens from patients with inflammatory bowel disease and primary sclerosing cholangitis and studied whether immunisation against mycobacterial hsp-65 resulted in production of antilactoferrin antibodies and vice versa. Polyclonal rabbit antihuman lactoferrin and monoclonal mouse anti-hsp-65 (ML30) were used for immunohistochemistry on biopsy specimens from patients with inflammatory bowel disease and primary sclerosing cholangitis. Rats were immunised against human lactoferrin and mycobacterial hsp-65 respectively. Antibody measurements were done by enzyme immunosorbent assays. It was found that lactoferrin and hsp-60/65 were not codistributed. Lactoferrin was found on vascular endothelium and in nonparenchymal liver cells both in inflamed and uninflamed tissues, but only in the hepatocytes of inflamed liver. ML30 reactivity was not inhibited by antilactoferrin antibodies. Rat anti-hsp-65 serum had no detectable antilactoferrin antibodies. In conclusion, antilactoferrin antibodies probably do not arise by immunisation against mycobacterial hsp-65. Both nonparenchymal cells and hepatocytes probably participate in clearance of lactoferrin. Endothelial exposure of lactoferrin may have pathogenic implications in diseases with antilactoferrin autoantibodies.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguas A., Esaguy N., Sunkel C. E., Silva M. T. Cross-reactivity and sequence homology between the 65-kilodalton mycobacterial heat shock protein and human lactoferrin, transferrin, and DR beta subsets of major histocompatibility complex class II molecules. Infect Immun. 1990 May;58(5):1461–1470. doi: 10.1128/iai.58.5.1461-1470.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science. 1977 Jul 15;197(4300):263–265. doi: 10.1126/science.327545. [DOI] [PubMed] [Google Scholar]
- Arnold R. R., Russell J. E., Champion W. J., Brewer M., Gauthier J. J. Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun. 1982 Mar;35(3):792–799. doi: 10.1128/iai.35.3.792-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakos M. A., Kurosky A., Czerwinski E. W., Goldblum R. M. A conserved binding site on the receptor for polymeric Ig is homologous to CDR1 of Ig V kappa domains. J Immunol. 1993 Aug 1;151(3):1346–1352. [PubMed] [Google Scholar]
- Boxer L. A., Björkstén B., Björk J., Yang H. H., Allen J. M., Baehner R. L. Neutropenia induced by systemic infusion of lactoferrin. J Lab Clin Med. 1982 Jun;99(6):866–872. [PubMed] [Google Scholar]
- Britigan B. E., Hassett D. J., Rosen G. M., Hamill D. R., Cohen M. S. Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques. Biochem J. 1989 Dec 1;264(2):447–455. doi: 10.1042/bj2640447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. S., Mao J., Rasmussen G. T., Serody J. S., Britigan B. E. Interaction of lactoferrin and lipopolysaccharide (LPS): effects on the antioxidant property of lactoferrin and the ability of LPS to prime human neutrophils for enhanced superoxide formation. J Infect Dis. 1992 Dec;166(6):1375–1378. doi: 10.1093/infdis/166.6.1375. [DOI] [PubMed] [Google Scholar]
- Coremans I. E., Hagen E. C., Daha M. R., van der Woude F. J., van der Voort E. A., Kleijburg-van der Keur C., Breedveld F. C. Antilactoferrin antibodies in patients with rheumatoid arthritis are associated with vasculitis. Arthritis Rheum. 1992 Dec;35(12):1466–1475. doi: 10.1002/art.1780351210. [DOI] [PubMed] [Google Scholar]
- Courtoy P. J., Moguilevsky N., Retegui L. A., Castracane C. E., Masson P. L. Uptake of lactoferrin by the liver. II. Endocytosis by sinusoidal cells. Lab Invest. 1984 Mar;50(3):329–334. [PubMed] [Google Scholar]
- Cramer E., Pryzwansky K. B., Villeval J. L., Testa U., Breton-Gorius J. Ultrastructural localization of lactoferrin and myeloperoxidase in human neutrophils by immunogold. Blood. 1985 Feb;65(2):423–432. [PubMed] [Google Scholar]
- Debanne M. T., Regoeczi E., Sweeney G. D., Krestynski F. Interaction of human lactoferrin with the rat liver. Am J Physiol. 1985 Apr;248(4 Pt 1):G463–G469. doi: 10.1152/ajpgi.1985.248.4.G463. [DOI] [PubMed] [Google Scholar]
- Dionysius D. A., Grieve P. A., Milne J. M. Forms of lactoferrin: their antibacterial effect on enterotoxigenic Escherichia coli. J Dairy Sci. 1993 Sep;76(9):2597–2600. doi: 10.3168/jds.S0022-0302(93)77594-3. [DOI] [PubMed] [Google Scholar]
- Elias D., Markovits D., Reshef T., van der Zee R., Cohen I. R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1576–1580. doi: 10.1073/pnas.87.4.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellerbroek P. M., Oudkerk Pool M., Ridwan B. U., Dolman K. M., von Blomberg B. M., von dem Borne A. E., Meuwissen S. G., Goldschmeding R. Neutrophil cytoplasmic antibodies (p-ANCA) in ulcerative colitis. J Clin Pathol. 1994 Mar;47(3):257–262. doi: 10.1136/jcp.47.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsaghier A., Prantera C., Bothamley G., Wilkins E., Jindal S., Ivanyi J. Disease association of antibodies to human and mycobacterial hsp70 and hsp60 stress proteins. Clin Exp Immunol. 1992 Aug;89(2):305–309. doi: 10.1111/j.1365-2249.1992.tb06950.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esaguy N., Aguas A. P., van Embden J. D., Silva M. T. Mycobacteria and human autoimmune disease: direct evidence of cross-reactivity between human lactoferrin and the 65-kilodalton protein of tubercle and leprosy bacilli. Infect Immun. 1991 Mar;59(3):1117–1125. doi: 10.1128/iai.59.3.1117-1125.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esaguy N., Freire O., Van Embden J. D., Aguas A. P. Lactoferrin triggers in vitro proliferation of T cells of Lewis rats submitted to mycobacteria-induced adjuvant arthritis. Scand J Immunol. 1993 Aug;38(2):147–152. doi: 10.1111/j.1365-3083.1993.tb01706.x. [DOI] [PubMed] [Google Scholar]
- Hajeer A. H., Bernstein R. M. Antibody to mycobacterial 65-kD heat shock protein in commercial antisera. Clin Exp Immunol. 1993 Dec;94(3):544–547. doi: 10.1111/j.1365-2249.1993.tb08232.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iyer S., Lönnerdal B. Lactoferrin, lactoferrin receptors and iron metabolism. Eur J Clin Nutr. 1993 Apr;47(4):232–241. [PubMed] [Google Scholar]
- Jindal S., Dudani A. K., Singh B., Harley C. B., Gupta R. S. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol. 1989 May;9(5):2279–2283. doi: 10.1128/mcb.9.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlsson-Parra A., Söderström K., Ferm M., Ivanyi J., Kiessling R., Klareskog L. Presence of human 65 kD heat shock protein (hsp) in inflamed joints and subcutaneous nodules of RA patients. Scand J Immunol. 1990 Jun;31(6):283–288. doi: 10.1111/j.1365-3083.1990.tb02770.x. [DOI] [PubMed] [Google Scholar]
- Kijlstra A., Jeurissen S. H. Modulation of classical C3 convertase of complement by tear lactoferrin. Immunology. 1982 Oct;47(2):263–270. [PMC free article] [PubMed] [Google Scholar]
- Kuizenga A., van Haeringen N. J., Kijlstra A. Inhibition of hydroxyl radical formation by human tears. Invest Ophthalmol Vis Sci. 1987 Feb;28(2):305–313. [PubMed] [Google Scholar]
- Kurose I., Yamada T., Wolf R., Granger D. N. P-selectin-dependent leukocyte recruitment and intestinal mucosal injury induced by lactoferrin. J Leukoc Biol. 1994 Jun;55(6):771–777. doi: 10.1002/jlb.55.6.771. [DOI] [PubMed] [Google Scholar]
- Lash J. A., Coates T. D., Lafuze J., Baehner R. L., Boxer L. A. Plasma lactoferrin reflects granulocyte activation in vivo. Blood. 1983 May;61(5):885–888. [PubMed] [Google Scholar]
- Lee G. R. The anemia of chronic disease. Semin Hematol. 1983 Apr;20(2):61–80. [PubMed] [Google Scholar]
- Leffell M. S., Spitznagel J. K. Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effects of immunoglobulin G subclasses and immune complexes coated on latex beads. Infect Immun. 1975 Oct;12(4):813–820. doi: 10.1128/iai.12.4.813-820.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto A., Yoshima H., Takasaki S., Kobata A. Structural study of the sugar chains of human lactoferrin: finding of four novel complex-type asparagine-linked sugar chains. J Biochem. 1982 Jan;91(1):143–155. doi: 10.1093/oxfordjournals.jbchem.a133671. [DOI] [PubMed] [Google Scholar]
- McAbee D. D., Nowatzke W., Oehler C., Sitaram M., Sbaschnig E., Opferman J. T., Carr J., Esbensen K. Endocytosis and degradation of bovine apo- and holo-lactoferrin by isolated rat hepatocytes are mediated by recycling calcium-dependent binding sites. Biochemistry. 1993 Dec 14;32(49):13749–13760. doi: 10.1021/bi00212a046. [DOI] [PubMed] [Google Scholar]
- Moguilevsky N., Retegui L. A., Courtoy P. J., Castracane C. E., Masson P. L. Uptake of lactoferrin by the liver. III. Critical role of the protein moiety. Lab Invest. 1984 Mar;50(3):335–340. [PubMed] [Google Scholar]
- Mulder A. H., Broekroelofs J., Horst G., Limburg P. C., Nelis G. F., Kallenberg C. G. Anti-neutrophil cytoplasmic antibodies (ANCA) in inflammatory bowel disease: characterization and clinical correlates. Clin Exp Immunol. 1994 Mar;95(3):490–497. doi: 10.1111/j.1365-2249.1994.tb07024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oseas R., Yang H. H., Baehner R. L., Boxer L. A. Lactoferrin: a promoter of polymorphonuclear leukocyte adhesiveness. Blood. 1981 May;57(5):939–945. [PubMed] [Google Scholar]
- Peen E., Almer S., Bodemar G., Rydén B. O., Sjölin C., Tejle K., Skogh T. Anti-lactoferrin antibodies and other types of ANCA in ulcerative colitis, primary sclerosing cholangitis, and Crohn's disease. Gut. 1993 Jan;34(1):56–62. doi: 10.1136/gut.34.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Retegui L. A., Moguilevsky N., Castracane C. F., Masson P. L. Uptake of lactoferrin by the liver. I. Role of the reticuloendothelial system as indicated by blockade experiments. Lab Invest. 1984 Mar;50(3):323–328. [PubMed] [Google Scholar]
- Saito K., Nakanuma Y. Lactoferrin and lysozyme in the intrahepatic bile duct of normal livers and hepatolithiasis. An immunohistochemical study. J Hepatol. 1992 May;15(1-2):147–153. doi: 10.1016/0168-8278(92)90028-n. [DOI] [PubMed] [Google Scholar]
- Van Snick J. L., Masson P. L., Heremans J. F. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med. 1974 Oct 1;140(4):1068–1084. doi: 10.1084/jem.140.4.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. S., Chan W. Y., Kloer H. U. Comparative studies on the chemical and immunochemical properties of human milk, human pancreatic juice and bovine milk lactoferrin. Comp Biochem Physiol B. 1984;78(3):575–580. doi: 10.1016/0305-0491(84)90100-7. [DOI] [PubMed] [Google Scholar]
- Ziere G. J., Bijsterbosch M. K., van Berkel T. J. Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of beta- very low density lipoprotein binding. J Biol Chem. 1993 Dec 25;268(36):27069–27075. [PubMed] [Google Scholar]
- Ziere G. J., van Dijk M. C., Bijsterbosch M. K., van Berkel T. J. Lactoferrin uptake by the rat liver. Characterization of the recognition site and effect of selective modification of arginine residues. J Biol Chem. 1992 Jun 5;267(16):11229–11235. [PubMed] [Google Scholar]
- van Eden W. Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev. 1991 Jun;121:5–28. doi: 10.1111/j.1600-065x.1991.tb00821.x. [DOI] [PubMed] [Google Scholar]


