Skip to main content
Gut logoLink to Gut
. 1996 May;38(5):679–686. doi: 10.1136/gut.38.5.679

Influence of cell interactions in a novel model of postnatal mucosal regeneration.

H R Patel 1, I S Tait 1, G S Evans 1, F C Campbell 1
PMCID: PMC1383148  PMID: 8707112

Abstract

BACKGROUND AND AIMS--Conventional models of postnatal mucosal regeneration are cumbersome and limited: a novel model is described here. In addition, the influence of cell interactions on mucosal regeneration is examined within the model. METHODS--Postnatal rat small intestinal mucosa was digested by enzymes to yield heterotypic cell aggregates (CA). CA colony forming ability, growth, and limited cytodifferentiation were assessed in vitro. CA were transplanted subcutaneously and retrieved for histological examination at staggered intervals to assess neomucosal morphogenesis and cytodifferentiation in vivo. Cell interactions in CA were disrupted by enzymes, thus producing cell suspensions (CS). Regeneration by CA and CS were compared. RESULTS--CA produced proliferative colonies in vitro and showed a temporal sequence of neomucosal morphogenesis and differentiation in vivo. CA colonies were more numerous within 24 hours of primary culture and had greater cellularity by 96 hours than CS colonies. Alkaline phosphatase was expressed only by 258 of 696 CA colonies (37%). CA subcutaneous grafts (48 of 56 (87%)) regenerated small intestinal neomucosa while CS were unsuccessful. CONCLUSION--These methods provide a model of mucosal regeneration which includes constituent processes of colony formation, growth, neomucosal morphogenesis, and cytodifferentiation. Preservation of cell interactions within CA seems advantageous to regeneration within the model.

Full text

PDF
679

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Dewachi H. S., Wright N. A., Appleton D. R., Watson A. J. The effect of a single injection of cytosine arabinoside on cell population kinetics in the mouse jejunal crypt. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;34(3):299–309. doi: 10.1007/BF02892427. [DOI] [PubMed] [Google Scholar]
  2. Al-Dewachi H. S., Wright N. A., Appleton D. R., Watson A. J. The effect of a single injection of hydroxyurea on cell population kinetics in the small bowel mucosa of the rat. Cell Tissue Kinet. 1977 May;10(3):203–213. doi: 10.1111/j.1365-2184.1977.tb00288.x. [DOI] [PubMed] [Google Scholar]
  3. Cairnie A. B., Millen B. H. Fission of crypts in the small intestine of the irradiated mouse. Cell Tissue Kinet. 1975 Mar;8(2):189–196. doi: 10.1111/j.1365-2184.1975.tb01219.x. [DOI] [PubMed] [Google Scholar]
  4. Del Buono R., Fleming K. A., Morey A. L., Hall P. A., Wright N. A. A nude mouse xenograft model of fetal intestine development and differentiation. Development. 1992 Jan;114(1):67–73. doi: 10.1242/dev.114.1.67. [DOI] [PubMed] [Google Scholar]
  5. Ekblom P. Developmentally regulated conversion of mesenchyme to epithelium. FASEB J. 1989 Aug;3(10):2141–2150. doi: 10.1096/fasebj.3.10.2666230. [DOI] [PubMed] [Google Scholar]
  6. Evans G. S., Flint N., Somers A. S., Eyden B., Potten C. S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci. 1992 Jan;101(Pt 1):219–231. doi: 10.1242/jcs.101.1.219. [DOI] [PubMed] [Google Scholar]
  7. Kedinger M., Simon-Assmann P. M., Lacroix B., Marxer A., Hauri H. P., Haffen K. Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev Biol. 1986 Feb;113(2):474–483. doi: 10.1016/0012-1606(86)90183-1. [DOI] [PubMed] [Google Scholar]
  8. Kedinger M., Simon P. M., Grenier J. F., Haffen K. Role of epithelial--mesenchymal interactions in the ontogenesis of intestinal brush-border enzymes. Dev Biol. 1981 Sep;86(2):339–347. doi: 10.1016/0012-1606(81)90191-3. [DOI] [PubMed] [Google Scholar]
  9. Mathan M., Moxey P. C., Trier J. S. Morphogenesis of fetal rat duodenal villi. Am J Anat. 1976 May;146(1):73–92. doi: 10.1002/aja.1001460104. [DOI] [PubMed] [Google Scholar]
  10. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  11. Moxey P. C., Trier J. S. Specialized cell types in the human fetal small intestine. Anat Rec. 1978 Jul;191(3):269–285. doi: 10.1002/ar.1091910302. [DOI] [PubMed] [Google Scholar]
  12. Tait I. S., Evans G. S., Flint N., Campbell F. C. Colonic mucosal replacement by syngeneic small intestinal stem cell transplantation. Am J Surg. 1994 Jan;167(1):67–72. doi: 10.1016/0002-9610(94)90055-8. [DOI] [PubMed] [Google Scholar]
  13. Tait I. S., Flint N., Campbell F. C., Evans G. S. Generation of neomucosa in vivo by transplantation of dissociated rat postnatal small intestinal epithelium. Differentiation. 1994 Apr;56(1-2):91–100. doi: 10.1046/j.1432-0436.1994.56120091.x. [DOI] [PubMed] [Google Scholar]
  14. Tait I. S., Penny J. I., Campbell F. C. Does neomucosa induced by small bowel stem cell transplantation have adequate function? Am J Surg. 1995 Jan;169(1):120–125. doi: 10.1016/s0002-9610(99)80119-6. [DOI] [PubMed] [Google Scholar]
  15. Withers H. R., Elkind M. M. Dose-survival characteristics of epithelial cells of mouse intestinal mucosa. Radiology. 1968 Nov;91(5):998–1000. doi: 10.1148/91.5.998. [DOI] [PubMed] [Google Scholar]
  16. Withers H. R., Elkind M. M. Radiosensitivity and fractionation response of crypt cells of mouse jejunum. Radiat Res. 1969 Jun;38(3):598–613. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES