Skip to main content
Gut logoLink to Gut
. 1996 Aug;39(2):214–219. doi: 10.1136/gut.39.2.214

Influence of peppermint oil on absorptive and secretory processes in rat small intestine.

A Beesley 1, J Hardcastle 1, P T Hardcastle 1, C J Taylor 1
PMCID: PMC1383301  PMID: 8991859

Abstract

BACKGROUND: Peppermint oil is used to relieve the symptoms of irritable bowel syndrome, relaxing intestinal smooth muscle by reducing the availability of calcium, but its effects on intestinal transport are unknown. AIMS: To determine the effect of peppermint oil on intestinal transport processes. METHODS: The influence of peppermint oil on intestinal transport was investigated in rat jejunum using both intestinal sheets mounted in Ussing chambers and brush border membrane vesicles. RESULTS: Mucosal peppermint oil (1 and 5 mg/ml) had no significant effect on basal short circuit current, but inhibited the increase associated with sodium dependent glucose absorption. The increased short circuit current induced by serosal acetylcholine, a reflection of calcium mediated electrogenic chloride secretion, was unaffected by mucosal peppermint oil (5 mg/ml). In contrast, serosal peppermint oil (1 mg/ml) inhibited the response to acetylcholine without reducing the effect of mucosal glucose. In brush border membrane vesicles active glucose uptake was inhibited by extravesicular peppermint oil at concentrations of 0.5 and 1 mg/ml. CONCLUSIONS: Peppermint oil in the intestinal lumen inhibits enterocyte glucose uptake via a direct action at the brush border membrane. Inhibition of secretion by serosal peppermint oil is consistent with a reduced availability of calcium.

Full text

PDF
214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins M. L., Salton M. R. Solubility characteristics of Micrococcus lysodeikticus membrane components in detergents and chaotropic salts analyzed by immunoelectrophoresis. Biochim Biophys Acta. 1979 May 3;553(1):40–53. doi: 10.1016/0005-2736(79)90029-4. [DOI] [PubMed] [Google Scholar]
  2. Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem. 1968 Jan;22(1):99–107. doi: 10.1016/0003-2697(68)90263-7. [DOI] [PubMed] [Google Scholar]
  3. Diamond J. M. Channels in epithelial cell membranes and junctions. Fed Proc. 1978 Oct;37(12):2639–2643. [PubMed] [Google Scholar]
  4. Donowitz M. Ca2+ in the control of active intestinal Na and Cl transport: involvement in neurohumoral action. Am J Physiol. 1983 Aug;245(2):G165–G177. doi: 10.1152/ajpgi.1983.245.2.G165. [DOI] [PubMed] [Google Scholar]
  5. Donowitz M., Welsh M. J. Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport. Annu Rev Physiol. 1986;48:135–150. doi: 10.1146/annurev.ph.48.030186.001031. [DOI] [PubMed] [Google Scholar]
  6. Ewe K. Intestinal transport in constipation and diarrhoea. Pharmacology. 1988;36 (Suppl 1):73–84. doi: 10.1159/000138424. [DOI] [PubMed] [Google Scholar]
  7. Field M., Fromm D., McColl I. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am J Physiol. 1971 May;220(5):1388–1396. doi: 10.1152/ajplegacy.1971.220.5.1388. [DOI] [PubMed] [Google Scholar]
  8. Field M., Rao M. C., Chang E. B. Intestinal electrolyte transport and diarrheal disease (1). N Engl J Med. 1989 Sep 21;321(12):800–806. doi: 10.1056/NEJM198909213211206. [DOI] [PubMed] [Google Scholar]
  9. Hardcastle J., Hardcastle P. T., Cookson J. Inhibitory actions of loperamide on absorptive processes in rat small intestine. Gut. 1986 Jun;27(6):686–694. doi: 10.1136/gut.27.6.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hardcastle J., Hardcastle P. T., Noble J. M. The involvement of calcium in the intestinal response to secretagogues in the rat. J Physiol. 1984 Oct;355:465–478. doi: 10.1113/jphysiol.1984.sp015432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawthorn M., Ferrante J., Luchowski E., Rutledge A., Wei X. Y., Triggle D. J. The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Aliment Pharmacol Ther. 1988 Apr;2(2):101–118. doi: 10.1111/j.1365-2036.1988.tb00677.x. [DOI] [PubMed] [Google Scholar]
  12. Hills J. M., Aaronson P. I. The mechanism of action of peppermint oil on gastrointestinal smooth muscle. An analysis using patch clamp electrophysiology and isolated tissue pharmacology in rabbit and guinea pig. Gastroenterology. 1991 Jul;101(1):55–65. doi: 10.1016/0016-5085(91)90459-x. [DOI] [PubMed] [Google Scholar]
  13. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  14. Leicester R. J., Hunt R. H. Peppermint oil to reduce colonic spasm during endoscopy. Lancet. 1982 Oct 30;2(8305):989–989. doi: 10.1016/s0140-6736(82)90191-x. [DOI] [PubMed] [Google Scholar]
  15. Lundgren O. Nervous control of intestinal transport. Baillieres Clin Gastroenterol. 1988 Jan;2(1):85–106. doi: 10.1016/0950-3528(88)90022-x. [DOI] [PubMed] [Google Scholar]
  16. Luppa D., Hartenstein H., Müller F. Relation between microvilli membrane potential and glucose transport capacity of rat small intestine. Biomed Biochim Acta. 1987;46(5):341–348. [PubMed] [Google Scholar]
  17. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perdue M. H., McKay D. M. Integrative immunophysiology in the intestinal mucosa. Am J Physiol. 1994 Aug;267(2 Pt 1):G151–G165. doi: 10.1152/ajpgi.1994.267.2.G151. [DOI] [PubMed] [Google Scholar]
  19. Przyborski S. A., Levin R. J. Enterocytes on rat jejunal villi but not in the crypts posses m3 mRNA for the M3 muscarinic receptor localized by in situ hybridization. Exp Physiol. 1993 Jan;78(1):109–112. doi: 10.1113/expphysiol.1993.sp003666. [DOI] [PubMed] [Google Scholar]
  20. Rees W. D., Evans B. K., Rhodes J. Treating irritable bowel syndrome with peppermint oil. Br Med J. 1979 Oct 6;2(6194):835–836. doi: 10.1136/bmj.2.6194.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smyth D. H., Wright E. M. Streaming potentials in the rat small intestine. J Physiol. 1966 Feb;182(3):591–602. doi: 10.1113/jphysiol.1966.sp007839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Somerville K. W., Richmond C. R., Bell G. D. Delayed release peppermint oil capsules (Colpermin) for the spastic colon syndrome: a pharmacokinetic study. Br J Clin Pharmacol. 1984 Oct;18(4):638–640. doi: 10.1111/j.1365-2125.1984.tb02519.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stewart C. P., Turnberg L. A. A microelectrode study of responses to secretagogues by epithelial cells on villus and crypt of rat small intestine. Am J Physiol. 1989 Sep;257(3 Pt 1):G334–G343. doi: 10.1152/ajpgi.1989.257.3.G334. [DOI] [PubMed] [Google Scholar]
  24. Wright E. M. The intestinal Na+/glucose cotransporter. Annu Rev Physiol. 1993;55:575–589. doi: 10.1146/annurev.ph.55.030193.003043. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES