Skip to main content
Gut logoLink to Gut
. 1996 Aug;39(2):220–225. doi: 10.1136/gut.39.2.220

An investigation into the reversibility of the morphological and cytokinetic changes seen in the small intestine of riboflavin deficient rats.

E A Williams 1, R D Rumsey 1, H J Powers 1
PMCID: PMC1383302  PMID: 8991860

Abstract

BACKGROUND: Impaired iron handling in riboflavin deficiency is thought to be partially a result of significant morphological and cytokinetic changes within the small intestine. AIMS: The aim of the study was to find out if the responses of the rat small intestine to riboflavin deficiency induced at weaning could be reversed upon repletion. SUBJECTS: 48 female weanling Wistar rats were used for the purpose of the study. METHODS: Rats were fed a riboflavin deficient diet or a complete control diet for a period of five weeks followed by a repletion period of up to three weeks. Rats were killed on day 0, 2, 7, or 21 of repletion. The duodenum was removed and fixed for subsequent analysis. RESULTS: Five weeks of riboflavin deficiency significantly changed the morphology and cytokinetics of the duodenum; the changes were not reversed within the 21 day repletion period despite biochemical evidence for a correction of the deficiency. CONCLUSIONS: The results show that the small intestine cannot readily recover from a period of riboflavin deficiency induced at weaning, supporting the notion that the weaning period is a critical time for gastrointestinal development and highlighting the importance of adequate nutrition during infancy.

Full text

PDF
220

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Nafussi A. I., Wright N. A. Cell kinetics in the mouse small intestine during immediate postnatal life. Virchows Arch B Cell Pathol Incl Mol Pathol. 1982;40(1):51–62. doi: 10.1007/BF02932850. [DOI] [PubMed] [Google Scholar]
  2. Altmann G. G., Enesco M. Cell number as a measure of distribution and renewal of epithelial cells in the small intestine of growing and adult rats. Am J Anat. 1967 Sep;121(2):319–336. doi: 10.1002/aja.1001210210. [DOI] [PubMed] [Google Scholar]
  3. Boyne R., Fell B. F., Robb I. The surface area of the intestinal mucosa in the lactating rat. J Physiol. 1966 Apr;183(3):570–575. doi: 10.1113/jphysiol.1966.sp007884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgess D. R. Morphogenesis of intestinal villi. II. Mechanism of formation of previllous ridges. J Embryol Exp Morphol. 1975 Dec;34(3):723–740. [PubMed] [Google Scholar]
  5. COULOMBRE A. J., COULOMBRE J. L. Intestinal development. I. Morphogenesis of the villi and musculature. J Embryol Exp Morphol. 1958 Sep;6(3):403–411. [PubMed] [Google Scholar]
  6. Clarke R. M. The effect of growth and of fasting on the number of villi and crypts in the small intestine of the albino rat. J Anat. 1972 May;112(Pt 1):27–33. [PMC free article] [PubMed] [Google Scholar]
  7. Clarke R. M. The effects of age on mucosal morphology and epithelial cell production in rat small intestine. J Anat. 1977 Jul;123(Pt 3):805–811. [PMC free article] [PubMed] [Google Scholar]
  8. Dunn J. S. The fine structure of the absorptive epithelial cells of the developing small intestine of the rat. J Anat. 1967 Jan;101(Pt 1):57–68. [PMC free article] [PubMed] [Google Scholar]
  9. Fairweather-Tait S. J., Powers H. J., Minski M. J., Whitehead J., Downes R. Riboflavin deficiency and iron absorption in adult Gambian men. Ann Nutr Metab. 1992;36(1):34–40. doi: 10.1159/000177696. [DOI] [PubMed] [Google Scholar]
  10. Forrester J. M. The number of villi in rat's jejunum and ileum: effect of normal growth, partial enterectomy, and tube feeding. J Anat. 1972 Feb;111(Pt 2):283–291. [PMC free article] [PubMed] [Google Scholar]
  11. Goodlad R. A., Wright N. A. Changes in intestinal cell proliferation, absorptive capacity and structure in young, adult and old rats. J Anat. 1990 Dec;173:109–118. [PMC free article] [PubMed] [Google Scholar]
  12. Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science. 1982 Oct 29;218(4571):474–475. doi: 10.1126/science.7123245. [DOI] [PubMed] [Google Scholar]
  13. Hanson W. R., Osborne J. W., Sharp J. G. Compensation by the residual intestine after intestinal resection in the rat. I. Influence of amount of tissue removed. Gastroenterology. 1977 Apr;72(4 Pt 1):692–700. [PubMed] [Google Scholar]
  14. Powers H. J. A study of maternofetal iron transfer in the riboflavin-deficient rat. J Nutr. 1987 May;117(5):852–856. doi: 10.1093/jn/117.5.852. [DOI] [PubMed] [Google Scholar]
  15. Powers H. J., Bates C. J., Duerden J. M. Effects of riboflavin deficiency in rats on some aspects of iron metabolism. Int J Vitam Nutr Res. 1983;53(4):371–376. [PubMed] [Google Scholar]
  16. Powers H. J., Weaver L. T., Austin S., Beresford J. K. A proposed intestinal mechanism for the effect of riboflavin deficiency on iron loss in the rat. Br J Nutr. 1993 Mar;69(2):553–561. doi: 10.1079/bjn19930055. [DOI] [PubMed] [Google Scholar]
  17. Powers H. J., Wright A. J., Fairweather-Tait S. J. The effect of riboflavin deficiency in rats on the absorption and distribution of iron. Br J Nutr. 1988 May;59(3):381–387. doi: 10.1079/bjn19880047. [DOI] [PubMed] [Google Scholar]
  18. Tasman-Jones C., Owen R. L., Jones A. L. Semipurified dietary fiber and small-bowel morphology in rats. Dig Dis Sci. 1982 Jun;27(6):519–524. doi: 10.1007/BF01296731. [DOI] [PubMed] [Google Scholar]
  19. Tillotson J. A., Sauberlich H. E. Effect of riboflavin depletion and repletion on the erythrocyte glutathione reductase in the rat. J Nutr. 1971 Nov;101(11):1459–1466. doi: 10.1093/jn/101.11.1459. [DOI] [PubMed] [Google Scholar]
  20. Williams E. A., Powers H. J., Rumsey R. D. Morphological changes in the rat small intestine in response to riboflavin depletion. Br J Nutr. 1995 Jan;73(1):141–146. doi: 10.1079/bjn19950015. [DOI] [PubMed] [Google Scholar]
  21. Williams E. A., Rumsey R. D., Powers H. J. Cytokinetic and structural responses of the rat small intestine to riboflavin depletion. Br J Nutr. 1996 Feb;75(2):315–324. doi: 10.1079/bjn19960133. [DOI] [PubMed] [Google Scholar]
  22. Wright N. A., Irwin M. The kinetics of villus cell populations in the mouse small intestine. I. Normal villi: the steady state requirement. Cell Tissue Kinet. 1982 Nov;15(6):595–609. doi: 10.1111/j.1365-2184.1982.tb01066.x. [DOI] [PubMed] [Google Scholar]
  23. Wynford-Thomas D., Williams E. D. Use of bromodeoxyuridine for cell kinetic studies in intact animals. Cell Tissue Kinet. 1986 Mar;19(2):179–182. doi: 10.1111/j.1365-2184.1986.tb00728.x. [DOI] [PubMed] [Google Scholar]
  24. Younoszai M. K., Ranshaw J. Gastrointestinal growth in normal male and female rats. Growth. 1974 Jun;38(2):225–235. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES