Skip to main content
Immunology logoLink to Immunology
. 1995 May;85(1):16–25.

Modulation of B-cell abnormalities in lupus-prone (NZB x NZW)F1 mice by normal bone marrow-derived B-lineage cells.

D Z Shao 1, S Yamada 1, F Hirayama 1, H Hirano 1, S Ono 1, T Hamaoka 1
PMCID: PMC1384019  PMID: 7635516

Abstract

(NZB x NZW)F1(NZB/WF1) mice spontaneously develop an autoimmune disease characterized by abnormality of haemopoietic stem cells. The present study examined a possible regulatory cell interaction between NZB/WF1 and normal bone marrow cells using radiation-induced chimeras. We demonstrated that the ability of NZB/WF1 bone marrow cells to transfer the typical disease with hypergammaglobulinemia including autoantibodies into lethally irradiated normal recipients was prevented by cotransfer of bone marrow from normal CBA/J mice but not from xid CBA/N mice carrying a selective defect in B-cell function. Flow cytometric analysis revealed that the generation of NZB/WF1 cells was reduced in the mixed chimeras given CBA/J but not CBA/N bone marrow cells. Interestingly, radiation chimeras reconstituted with a mixture of NZB/WF1 bone marrow and CBA/J splenic B cells did not show elevation of serum immunoglobulin levels, although most of the spleen cells were dominated by NZB/WF1 cells. On the other hand, NZB/WF1 B cells maturated in vivo in the presence of CBA/J bone marrow or splenic B cells lost the hyper-responsiveness to lipopolysaccharide (LPS) in the autoantibody production in vitro. These results suggest that radiosensitive normal B-lineage cells have the regulatory activity to ameliorate the hypergammaglobulinemia of NZB/WF1 mice by reducing the generation of NZB/WF1 B cells and/or by correcting their hyper-responsiveness, and that NZB/WF1 mice may have a defect(s) in the regulatory cell function. In addition, CBA/J splenic B cells were shown to modulate the B-cell abnormality even when injected into non-irradiated NZB/WF1 mice manifesting autoimmunity.

Full text

PDF
16

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Watanabe-Fukunaga R., Nagata S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1756–1760. doi: 10.1073/pnas.90.5.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akizuki M., Reeves J. P., Steinberg A. D. Expression of autoimmunity by NZB/NZW marrow. Clin Immunol Immunopathol. 1978 Jul;10(3):247–250. doi: 10.1016/0090-1229(78)90177-0. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D., Marshall J. D., Roths J. B., Sidman C. L. Differences defined by bone marrow transplantation suggest that lpr and gld are mutations of genes encoding an interacting pair of molecules. J Exp Med. 1990 Nov 1;172(5):1367–1375. doi: 10.1084/jem.172.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boehmer H., Sprent J., Nabholz M. Tolerance to histocompatibility determinants in tetraparental bone marrow chimeras. J Exp Med. 1975 Feb 1;141(2):322–334. doi: 10.1084/jem.141.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen P. L., Eisenberg R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–269. doi: 10.1146/annurev.iy.09.040191.001331. [DOI] [PubMed] [Google Scholar]
  6. Cyster J. G., Hartley S. B., Goodnow C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature. 1994 Sep 29;371(6496):389–395. doi: 10.1038/371389a0. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg R. A., Izui S., McConahey P. J., Hang L., Peters C. J., Theofilopoulos A. N., Dixon F. J. Male determined accelerated autoimmune disease in BXSB mice: transfer by bone marrow and spleen cells. J Immunol. 1980 Sep;125(3):1032–1036. [PubMed] [Google Scholar]
  8. Ettinger R., Wang J. K., Bossu P., Papas K., Sidman C. L., Abbas A. K., Marshak-Rothstein A. Functional distinctions between MRL-lpr and MRL-gld lymphocytes. Normal cells reverse the gld but not lpr immunoregulatory defect. J Immunol. 1994 Feb 15;152(4):1557–1568. [PubMed] [Google Scholar]
  9. Fodstad O., Hansen C. T., Cannon G. B., Statham C. N., Lichtenstein G. R., Boyd M. R. Lack of correlation between natural killer activity and tumor growth control in nude mice with different immune defects. Cancer Res. 1984 Oct;44(10):4403–4408. [PubMed] [Google Scholar]
  10. Izui S., McConahey P. J., Dixon F. J. Increased spontaneous polyclonal activation of B lymphocytes in mice with spontaneous autoimmune disease. J Immunol. 1978 Dec;121(6):2213–2219. [PubMed] [Google Scholar]
  11. Katagiri T., Cohen P. L., Eisenberg R. A. The lpr gene causes an intrinsic T cell abnormality that is required for hyperproliferation. J Exp Med. 1988 Mar 1;167(3):741–751. doi: 10.1084/jem.167.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mihara M., Ohsugi Y., Saito K., Miyai T., Togashi M., Ono S., Murakami S., Dobashi K., Hirayama F., Hamaoka T. Immunologic abnormality in NZB/NZW F1 mice. Thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals. J Immunol. 1988 Jul 1;141(1):85–90. [PubMed] [Google Scholar]
  13. Morton J. I., Siegel B. V. Transplantation of autoimmune potential. I. Development of antinuclear antibodies in H-2 histocompatible recipients of bone marrow from New Zealand Black mice. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2162–2165. doi: 10.1073/pnas.71.6.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nishikawa S., Sasaki Y., Kina T., Amagai T., Katsura Y. A monoclonal antibody against Igh6-4 determinant. Immunogenetics. 1986;23(2):137–139. doi: 10.1007/BF00377976. [DOI] [PubMed] [Google Scholar]
  15. Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
  16. Ono S., Takahama Y., Hamaoka T. Ia-restricted B-B cell interaction. I. The MHC haplotype of bone marrow cells present during B cell ontogeny dictates the self-recognition specificity of B cells in the polyclonal B cell activation by a B cell differentiation factor, B151-TRF2. J Immunol. 1987 Nov 15;139(10):3213–3223. [PubMed] [Google Scholar]
  17. Ozato K., Mayer N. M., Sachs D. H. Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation. 1982 Sep;34(3):113–120. doi: 10.1097/00007890-198209000-00001. [DOI] [PubMed] [Google Scholar]
  18. Reininger L., Radaszkiewicz T., Kosco M., Melchers F., Rolink A. G. Development of autoimmune disease in SCID mice populated with long-term "in vitro" proliferating (NZB x NZW)F1 pre-B cells. J Exp Med. 1992 Nov 1;176(5):1343–1353. doi: 10.1084/jem.176.5.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roths J. B., Murphy E. D., Eicher E. M. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J Exp Med. 1984 Jan 1;159(1):1–20. doi: 10.1084/jem.159.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  21. Scher I. The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol. 1982;33:1–71. doi: 10.1016/s0065-2776(08)60834-2. [DOI] [PubMed] [Google Scholar]
  22. Schüppel R., Wilke J., Weiler E. Monoclonal anti-allotype antibody towards BALB/c IgM. Analysis of specificity and site of a V-C crossover in recombinant strain BALB-Igh-Va/Igh-Cb. Eur J Immunol. 1987 May;17(5):739–741. doi: 10.1002/eji.1830170527. [DOI] [PubMed] [Google Scholar]
  23. Sentman C. L., Kumar V., Koo G., Bennett M. Effector cell expression of NK1.1, a murine natural killer cell-specific molecule, and ability of mice to reject bone marrow allografts. J Immunol. 1989 Mar 15;142(6):1847–1853. [PubMed] [Google Scholar]
  24. Singer A., Hodes R. J. Mechanisms of T cell-B cell interaction. Annu Rev Immunol. 1983;1:211–241. doi: 10.1146/annurev.iy.01.040183.001235. [DOI] [PubMed] [Google Scholar]
  25. Sobel E. S., Kakkanaiah V. N., Cohen P. L., Eisenberg R. A. Correction of gld autoimmunity by co-infusion of normal bone marrow suggests that gld is a mutation of the Fas ligand gene. Int Immunol. 1993 Oct;5(10):1275–1278. doi: 10.1093/intimm/5.10.1275. [DOI] [PubMed] [Google Scholar]
  26. Sobel E. S., Katagiri T., Katagiri K., Morris S. C., Cohen P. L., Eisenberg R. A. An intrinsic B cell defect is required for the production of autoantibodies in the lpr model of murine systemic autoimmunity. J Exp Med. 1991 Jun 1;173(6):1441–1449. doi: 10.1084/jem.173.6.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sprent J., Bruce J. Physiology of B cells in mice with X-linked immunodeficiency (xid). III. Disappearance of xid B cells in double bone marrow chimeras. J Exp Med. 1984 Sep 1;160(3):711–723. doi: 10.1084/jem.160.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takahama Y., Ono S., Ishihara K., Hirano H., Hamaoka T. B-B cell interaction involved in polyclonal B cell activation is restricted by I-A but not by I-E molecules. Int Immunol. 1990;2(1):63–71. doi: 10.1093/intimm/2.1.63. [DOI] [PubMed] [Google Scholar]
  29. Takahashi T., Tanaka M., Brannan C. I., Jenkins N. A., Copeland N. G., Suda T., Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994 Mar 25;76(6):969–976. doi: 10.1016/0092-8674(94)90375-1. [DOI] [PubMed] [Google Scholar]
  30. Takeda K., Dennert G. The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med. 1993 Jan 1;177(1):155–164. doi: 10.1084/jem.177.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES