Skip to main content
Immunology logoLink to Immunology
. 1995 May;85(1):74–81.

A mutation in the alpha 3 domain of Db that abrogates CD8 binding does not affect presentation of an immunodominant H-Y peptide.

J P Dutz 1, S J Teh 1, N Killeen 1, H S Teh 1
PMCID: PMC1384027  PMID: 7543449

Abstract

The peptidic nature of the male (H-Y) antigen, a model minor histocompatibility antigen in H-2b mice, has recently been demonstrated. In this study we show that the H-Y peptide, which is recognized by PM-1, a Db-restricted cytotoxic T-lymphocyte (CTL) clone, is absent in male H-2d spleen cells but present in male H-2d spleen cells that also express a transgenic Db molecule under its endogenous promoter. This result indicates that both the H-Y and the Db gene products are essential and sufficient for production of the Db-restricted H-Y peptide. By comparing the ability of the PM-1 clone and bulk CTL generated in a secondary mixed lymphocyte culture to recognize H-Y peptidic material eluted from affinity-purified Db molecules and separated by reversed-phase high-performance liquid chromatography (HPLC), we provide evidence that there is an immunodominant H-Y epitope that is presented by the Db molecule. Furthermore, the presentation of this epitope is not affected by a mutation in the alpha 3 domain of Db (asp227 to lys227), which abrogates CD8 binding, since similar amounts of H-Y peptide were eluted from affinity-purified wild-type or mutant Db molecules. However, the generation of the H-Y epitope is dependent on the presence of beta 2-microglobulin, since it is absent in male H-2b mice that lack a functional beta 2-microglobulin gene. The implications of these findings on T-cell development are discussed.

Full text

PDF
74

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen H., Fraser J., Flyer D., Calvin S., Flavell R. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7447–7451. doi: 10.1073/pnas.83.19.7447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apasov S., Sitkovsky M. Highly lytic CD8+, alpha beta T-cell receptor cytotoxic T cells with major histocompatibility complex (MHC) class I antigen-directed cytotoxicity in beta 2-microglobulin, MHC class I-deficient mice. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2837–2841. doi: 10.1073/pnas.90.7.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BILLINGHAM R. E., SILVERS W. K. Studies on tolerance of the Y chromosome antigen in mice. J Immunol. 1960 Jul;85:14–26. [PubMed] [Google Scholar]
  4. Billingham R. E., Hings I. M. The H-Y antigen and its role in natural transplantation. Hum Genet. 1981;58(1):9–17. doi: 10.1007/BF00284141. [DOI] [PubMed] [Google Scholar]
  5. Carlow D. A., van Oers N. S., Teh S. J., Teh H. S. Deletion of antigen-specific immature thymocytes by dendritic cells requires LFA-1/ICAM interactions. J Immunol. 1992 Mar 15;148(6):1595–1603. [PubMed] [Google Scholar]
  6. Eichwald E. J., Silmser C. R. Skin. Transplant Bull. 1955;2:148–149. [PubMed] [Google Scholar]
  7. Elliott T., Cerundolo V., Elvin J., Townsend A. Peptide-induced conformational change of the class I heavy chain. Nature. 1991 May 30;351(6325):402–406. doi: 10.1038/351402a0. [DOI] [PubMed] [Google Scholar]
  8. Falk K., Rötzschke O., Rammensee H. G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature. 1990 Nov 15;348(6298):248–251. doi: 10.1038/348248a0. [DOI] [PubMed] [Google Scholar]
  9. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  10. Gavin M. A., Dere B., Grandea A. G., 3rd, Hogquist K. A., Bevan M. J. Major histocompatibility complex class I allele-specific peptide libraries: identification of peptides that mimic an H-Y T cell epitope. Eur J Immunol. 1994 Sep;24(9):2124–2133. doi: 10.1002/eji.1830240929. [DOI] [PubMed] [Google Scholar]
  11. Glas R., Franksson L., Ohlén C., Höglund P., Koller B., Ljunggren H. G., Kärre K. Major histocompatibility complex class I-specific and -restricted killing of beta 2-microglobulin-deficient cells by CD8+ cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11381–11385. doi: 10.1073/pnas.89.23.11381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glas R., Ohlén C., Höglund P., Kärre K. The CD8+ T cell repertoire in beta 2-microglobulin-deficient mice is biased towards reactivity against self-major histocompatibility class I. J Exp Med. 1994 Feb 1;179(2):661–672. doi: 10.1084/jem.179.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gordon R. D., Simpson E., Samelson L. E. In vitro cell-mediated immune responses to the male specific(H-Y) antigen in mice. J Exp Med. 1975 Nov 1;142(5):1108–1120. doi: 10.1084/jem.142.5.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griem P., Wallny H. J., Falk K., Rötzschke O., Arnold B., Schönrich G., Hämmerling G., Rammensee H. G. Uneven tissue distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell. 1991 May 17;65(4):633–640. doi: 10.1016/0092-8674(91)90095-g. [DOI] [PubMed] [Google Scholar]
  15. Jacobs H., Von Boehmer H., Melief C. J., Berns A. Mutations in the major histocompatibility complex class I antigen-presenting groove affect both negative and positive selection of T cells. Eur J Immunol. 1990 Oct;20(10):2333–2337. doi: 10.1002/eji.1830201024. [DOI] [PubMed] [Google Scholar]
  16. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  17. Killeen N., Moriarty A., Teh H. S., Littman D. R. Requirement for CD8-major histocompatibility complex class I interaction in positive and negative selection of developing T cells. J Exp Med. 1992 Jul 1;176(1):89–97. doi: 10.1084/jem.176.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
  19. Koller B. H., Marrack P., Kappler J. W., Smithies O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. Science. 1990 Jun 8;248(4960):1227–1230. doi: 10.1126/science.2112266. [DOI] [PubMed] [Google Scholar]
  20. Ljunggren H. G., Kärre K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med. 1985 Dec 1;162(6):1745–1759. doi: 10.1084/jem.162.6.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ozato K., Hansen T. H., Sachs D. H. Monoclonal antibodies to mouse MHC antigens. II. Antibodies to the H-2Ld antigen, the products of a third polymorphic locus of the mouse major histocompatibility complex. J Immunol. 1980 Dec;125(6):2473–2477. [PubMed] [Google Scholar]
  22. Potter T. A., Rajan T. V., Dick R. F., 2nd, Bluestone J. A. Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. Nature. 1989 Jan 5;337(6202):73–75. doi: 10.1038/337073a0. [DOI] [PubMed] [Google Scholar]
  23. Russell J. H., Manning D. E., McCulley D. E., Meleedy-Rey P. Antigen as a positive and negative regulator of proliferation in cytotoxic lymphocytes. A model for the differential regulation of proliferation and lytic activity. J Immunol. 1988 Mar 15;140(6):1796–1801. [PubMed] [Google Scholar]
  24. Rötzschke O., Falk K., Faath S., Rammensee H. G. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991 Nov 1;174(5):1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rötzschke O., Falk K., Stevanović S., Jung G., Walden P., Rammensee H. G. Exact prediction of a natural T cell epitope. Eur J Immunol. 1991 Nov;21(11):2891–2894. doi: 10.1002/eji.1830211136. [DOI] [PubMed] [Google Scholar]
  26. Rötzschke O., Falk K., Wallny H. J., Faath S., Rammensee H. G. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y. Science. 1990 Jul 20;249(4966):283–287. doi: 10.1126/science.1695760. [DOI] [PubMed] [Google Scholar]
  27. Salter R. D., Benjamin R. J., Wesley P. K., Buxton S. E., Garrett T. P., Clayberger C., Krensky A. M., Norment A. M., Littman D. R., Parham P. A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2. Nature. 1990 May 3;345(6270):41–46. doi: 10.1038/345041a0. [DOI] [PubMed] [Google Scholar]
  28. Schumacher T. N., Kantesaria D. V., Heemels M. T., Ashton-Rickardt P. G., Shepherd J. C., Fruh K., Yang Y., Peterson P. A., Tonegawa S., Ploegh H. L. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med. 1994 Feb 1;179(2):533–540. doi: 10.1084/jem.179.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Speiser D. E., Kyburz D., Stübi U., Hengartner H., Zinkernagel R. M. Discrepancy between in vitro measurable and in vivo virus neutralizing cytotoxic T cell reactivities. Low T cell receptor specificity and avidity sufficient for in vitro proliferation or cytotoxicity to peptide-coated target cells but not for in vivo protection. J Immunol. 1992 Aug 1;149(3):972–980. [PubMed] [Google Scholar]
  30. Townsend A., Ohlén C., Bastin J., Ljunggren H. G., Foster L., Kärre K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature. 1989 Aug 10;340(6233):443–448. doi: 10.1038/340443a0. [DOI] [PubMed] [Google Scholar]
  31. Udaka K., Tsomides T. J., Eisen H. N. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell. 1992 Jun 12;69(6):989–998. doi: 10.1016/0092-8674(92)90617-l. [DOI] [PubMed] [Google Scholar]
  32. Vasquez N. J., Kaye J., Hedrick S. M. In vivo and in vitro clonal deletion of double-positive thymocytes. J Exp Med. 1992 May 1;175(5):1307–1316. doi: 10.1084/jem.175.5.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wallny H. J., Rötzschke O., Falk K., Hämmerling G., Rammensee H. G. Gene transfer experiments imply instructive role of major histocompatibility complex class I molecules in cellular peptide processing. Eur J Immunol. 1992 Mar;22(3):655–659. doi: 10.1002/eji.1830220307. [DOI] [PubMed] [Google Scholar]
  34. Wettstein P. J. Minor histocompatibility loci. Immunol Ser. 1989;43:339–357. [PubMed] [Google Scholar]
  35. Yin L., Poirier G., Neth O., Hsuan J. J., Totty N. F., Stauss H. J. Few peptides dominate cytotoxic T lymphocyte responses to single and multiple minor histocompatibility antigens. Int Immunol. 1993 Sep;5(9):1003–1009. doi: 10.1093/intimm/5.9.1003. [DOI] [PubMed] [Google Scholar]
  36. Zijlstra M., Auchincloss H., Jr, Loring J. M., Chase C. M., Russell P. S., Jaenisch R. Skin graft rejection by beta 2-microglobulin-deficient mice. J Exp Med. 1992 Apr 1;175(4):885–893. doi: 10.1084/jem.175.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. von Boehmer H., Hengartner H., Nabholz M., Lernhardt W., Schreier M. H., Haas W. Fine specificity of a continuously growing killer cell clone specific for H-Y antigen. Eur J Immunol. 1979 Aug;9(8):592–597. doi: 10.1002/eji.1830090804. [DOI] [PubMed] [Google Scholar]
  38. von Boehmer H., Teh H. S., Kisielow P. The thymus selects the useful, neglects the useless and destroys the harmful. Immunol Today. 1989 Feb;10(2):57–61. doi: 10.1016/0167-5699(89)90307-1. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES