Abstract
Mannose binding protein (MBP) is a calcium-dependent C-type lectin secreted by the liver which seems to be an important component of innate or natural immunity. We have investigated the effects of Candida albicans and thioglycolate injection into transgenic mice bearing the human MBP gene. The transgenes contained a 15 kb fragment of the MBP gene which included the complete coding sequence. Northern blot hybridization showed human MBP mRNA transcripts in the liver of two transgenic lines with low and high copy number respectively. Western blot analysis showed the presence in serum of human MBP which associated into the higher multimeric forms which are capable of activating complement. Enzyme-linked immunosorbent assays (ELISA) showed that serum human MBP concentrations in the transgenes (1.90 +/- 0.16 mg/l, mean +/- SEM) were about twice as high as the levels in man. The serum concentration of MBP A, which is the mouse homologue of MBP, (13.9 +/- 0.45 mg/l) was about seven times that of human MBP. Intravenous injection of Candida albicans caused the serum human MBP level to fall by more than 50% in the first hour and then slowly recover, but it did not return the initial value by 72 hr. Candida injection caused a 25% fall in serum mouse MBP A in the first hour which then rose to supranormal levels by 72 hr. Following Candida injection mouse MBP A mRNA concentrations increased over 72 hr in contrast to human MBP mRNA which remained constant in both transgenic lines. These data indicate that the human MBP gene fragment in the transgene did not include the regulatory elements of the gene. Total haemolytic complement activity and C3 concentrations also fell immediately after Candida and thioglycolate injection while the concentrations of mannose specific immunoglobulin G (IgG) and immunoglobulin M (IgM) did not fall. The data indicate that mannose binding protein plays an important role in the initial stages of defence against infection which, in this model, is quantitatively greater than that of mannose-specific IgG and IgM antibodies. Mannose binding protein is probably most important in defense of previously unexposed and non-immune hosts.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai T., Tabona P., Summerfield J. A. Human mannose-binding protein gene is regulated by interleukins, dexamethasone and heat shock. Q J Med. 1993 Sep;86(9):575–582. [PubMed] [Google Scholar]
- Banerji J., Olson L., Schaffner W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. 1983 Jul;33(3):729–740. doi: 10.1016/0092-8674(83)90015-6. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Ezekowitz R. A., Day L. E., Herman G. A. A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J Exp Med. 1988 Mar 1;167(3):1034–1046. doi: 10.1084/jem.167.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ezekowitz R. A., Kuhlman M., Groopman J. E., Byrn R. A. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med. 1989 Jan 1;169(1):185–196. doi: 10.1084/jem.169.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillies S. D., Morrison S. L., Oi V. T., Tonegawa S. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell. 1983 Jul;33(3):717–728. doi: 10.1016/0092-8674(83)90014-4. [DOI] [PubMed] [Google Scholar]
- Hartshorn K. L., Sastry K., White M. R., Anders E. M., Super M., Ezekowitz R. A., Tauber A. I. Human mannose-binding protein functions as an opsonin for influenza A viruses. J Clin Invest. 1993 Apr;91(4):1414–1420. doi: 10.1172/JCI116345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987 Jun 5;262(16):7451–7454. [PubMed] [Google Scholar]
- Kawasaki N., Kawasaki T., Yamashina I. A serum lectin (mannan-binding protein) has complement-dependent bactericidal activity. J Biochem. 1989 Sep;106(3):483–489. doi: 10.1093/oxfordjournals.jbchem.a122878. [DOI] [PubMed] [Google Scholar]
- Kawasaki N., Kawasaki T., Yamashina I. Isolation and characterization of a mannan-binding protein from human serum. J Biochem. 1983 Sep;94(3):937–947. doi: 10.1093/oxfordjournals.jbchem.a134437. [DOI] [PubMed] [Google Scholar]
- Krumlauf R., Hammer R. E., Brinster R., Chapman V. M., Tilghman S. M. Regulated expression of alpha-fetoprotein genes in transgenic mice. Cold Spring Harb Symp Quant Biol. 1985;50:371–378. doi: 10.1101/sqb.1985.050.01.047. [DOI] [PubMed] [Google Scholar]
- Kurata H., Cheng H. M., Kozutsumi Y., Yokota Y., Kawasaki T. Role of the collagen-like domain of the human serum mannan-binding protein in the activation of complement and the secretion of this lectin. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1204–1210. doi: 10.1006/bbrc.1993.1345. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
- Lipscombe R. J., Sumiya M., Hill A. V., Lau Y. L., Levinsky R. J., Summerfield J. A., Turner M. W. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet. 1992 Dec;1(9):709–715. doi: 10.1093/hmg/1.9.709. [DOI] [PubMed] [Google Scholar]
- Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
- Malhotra R., Laursen S. B., Willis A. C., Sim R. B. Localization of the receptor-binding site in the collectin family of proteins. Biochem J. 1993 Jul 1;293(Pt 1):15–19. doi: 10.1042/bj2930015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsushita M., Takahashi A., Hatsuse H., Kawakami M., Fujita T. Human mannose-binding protein is identical to a component of Ra-reactive factor. Biochem Biophys Res Commun. 1992 Mar 16;183(2):645–651. doi: 10.1016/0006-291x(92)90531-o. [DOI] [PubMed] [Google Scholar]
- Pinkerton P. H., Bannerman R. M., Doeblin T. D., Benisch B. M., Edwards J. A. Iron metabolism and absorption studies in the X-linked anaemia of mice. Br J Haematol. 1970 Feb;18(2):211–228. doi: 10.1111/j.1365-2141.1970.tb01435.x. [DOI] [PubMed] [Google Scholar]
- Queen C., Baltimore D. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. 1983 Jul;33(3):741–748. doi: 10.1016/0092-8674(83)90016-8. [DOI] [PubMed] [Google Scholar]
- Richardson M. D., Smith H. Resistance of virulent and attenuated strains of Candida albicans to intracellular killing by human and mouse phagocytes. J Infect Dis. 1981 Dec;144(6):557–564. doi: 10.1093/infdis/144.6.557. [DOI] [PubMed] [Google Scholar]
- Sastry K., Herman G. A., Day L., Deignan E., Bruns G., Morton C. C., Ezekowitz R. A. The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med. 1989 Oct 1;170(4):1175–1189. doi: 10.1084/jem.170.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastry K., Zahedi K., Lelias J. M., Whitehead A. S., Ezekowitz R. A. Molecular characterization of the mouse mannose-binding proteins. The mannose-binding protein A but not C is an acute phase reactant. J Immunol. 1991 Jul 15;147(2):692–697. [PubMed] [Google Scholar]
- Sawyer R. T., Moon R. J., Beneke E. S. Hepatic clearance of Candida albicans in rats. Infect Immun. 1976 Dec;14(6):1348–1355. doi: 10.1128/iai.14.6.1348-1355.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweinle J. E., Nishiyasu M., Ding T. Q., Sastry K., Gillies S. D., Ezekowitz R. A. Truncated forms of mannose-binding protein multimerize and bind to mannose-rich Salmonella montevideo but fail to activate complement in vitro. J Biol Chem. 1993 Jan 5;268(1):364–370. [PubMed] [Google Scholar]
- Sumiya M., Super M., Tabona P., Levinsky R. J., Arai T., Turner M. W., Summerfield J. A. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991 Jun 29;337(8757):1569–1570. doi: 10.1016/0140-6736(91)93263-9. [DOI] [PubMed] [Google Scholar]
- Summerfield J. A., Taylor M. E. Mannose-binding proteins in human serum: identification of mannose-specific immunoglobulins and a calcium-dependent lectin, of broader carbohydrate specificity, secreted by hepatocytes. Biochim Biophys Acta. 1986 Sep 4;883(2):197–206. doi: 10.1016/0304-4165(86)90309-0. [DOI] [PubMed] [Google Scholar]
- Super M., Gillies S. D., Foley S., Sastry K., Schweinle J. E., Silverman V. J., Ezekowitz R. A. Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet. 1992 Sep;2(1):50–55. doi: 10.1038/ng0992-50. [DOI] [PubMed] [Google Scholar]
- Super M., Thiel S., Lu J., Levinsky R. J., Turner M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989 Nov 25;2(8674):1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
- Taylor M. E., Brickell P. M., Craig R. K., Summerfield J. A. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J. 1989 Sep 15;262(3):763–771. doi: 10.1042/bj2620763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiel S., Holmskov U., Hviid L., Laursen S. B., Jensenius J. C. The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin Exp Immunol. 1992 Oct;90(1):31–35. doi: 10.1111/j.1365-2249.1992.tb05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittenberg C., Reed S. I. Control of the yeast cell cycle is associated with assembly/disassembly of the Cdc28 protein kinase complex. Cell. 1988 Sep 23;54(7):1061–1072. doi: 10.1016/0092-8674(88)90121-3. [DOI] [PubMed] [Google Scholar]
- Yeoman H., Mellor A. L. Tolerance and MHC restriction in transgenic mice expressing a MHC class I gene in erythroid cells. Int Immunol. 1992 Jan;4(1):59–65. doi: 10.1093/intimm/4.1.59. [DOI] [PubMed] [Google Scholar]
- van Dijk H., Rademaker P. M., Willers J. M. Estimation of classical pathway of mouse complement activity by use of sensitized rabbit erythrocytes. J Immunol Methods. 1980;39(3):257–268. doi: 10.1016/0022-1759(80)90060-5. [DOI] [PubMed] [Google Scholar]