Abstract
TU27 monoclonal antibody reacts with the cellular receptor to the beta subunit of the interleukin-2 receptor (IL-2R) (p70-75). This reagent has been utilized to demonstrate directly that the IL-2R beta is the IL-2-binding protein that mediates the activation of large granular lymphocytes (LGL) to proliferate and increase cytolytic activity in response to IL-2. The results presented here show that (i) the frequency of TU27+ cells paralleled the frequency of CD16+ (Leu-11+) cells; (ii) TU27 completely abrogated the proliferative response of LGL to IL-2, while GL439, an anti-IL-2R alpha (anti-Tac) reagent, had a much smaller effect, and the effect of the two together was no different from the effect of TU27 alone; (iii) TU27 abolished the IL-2-induced activation of natural killer (NK) activity and inhibited the development of LAK activity, while GL439 had no effect; and (iv) TU27 also inhibited naive NK activity. Therefore, these data clearly show that the IL-2-IL-2R beta interaction is responsible, and probably completely so, for the proliferative and cytolytic-promoting effects of IL-2 on LGL. In addition, they also suggest a role for this interaction in autocrine effects on native NK activity.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bloom E. T., Babbitt J. T., Kawakami K. Monocyte-mediated augmentation of human natural killer cell activity: conditions, monocyte and effector cell characteristics. J Immunol. 1986 Jul 1;137(1):172–178. [PubMed] [Google Scholar]
- Bloom E. T., Babbitt J. T. Monocyte-mediated augmentation of human natural cell-mediated cytotoxicity. Cell Immunol. 1985 Mar;91(1):21–32. doi: 10.1016/0008-8749(85)90028-0. [DOI] [PubMed] [Google Scholar]
- Bloom E. T., Korn E. L. Quantification of natural cytotoxicity by human lymphocyte subpopulations isolated by density: heterogeneity of the effector cells. J Immunol Methods. 1983 Mar 25;58(3):323–335. doi: 10.1016/0022-1759(83)90360-5. [DOI] [PubMed] [Google Scholar]
- Domzig W., Stadler B. M., Herberman R. B. Interleukin 2 dependence of human natural killer (NK) cell activity. J Immunol. 1983 Apr;130(4):1970–1973. [PubMed] [Google Scholar]
- Hameed A., Olsen K. J., Lee M. K., Lichtenheld M. G., Podack E. R. Cytolysis by Ca-permeable transmembrane channels. Pore formation causes extensive DNA degradation and cell lysis. J Exp Med. 1989 Mar 1;169(3):765–777. doi: 10.1084/jem.169.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981 May 28;291(5813):335–338. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
- Kedar E., Rezai A. R., Giorgi J. V., Gale R. P., Champlin R. E., Mitsuyasu R. T., Fahey J. L. Immunomodulating effects in vitro of interleukin-2 and interferon-gamma on human blood and bone marrow mononuclear cells. Nat Immun Cell Growth Regul. 1988;7(1):13–30. [PubMed] [Google Scholar]
- Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
- Robb R. J., Greene W. C. Internalization of interleukin 2 is mediated by the beta chain of the high-affinity interleukin 2 receptor. J Exp Med. 1987 Apr 1;165(4):1201–1206. doi: 10.1084/jem.165.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robb R. J., Rusk C. M., Neeper M. P. Structure-function relationships for the interleukin 2 receptor: location of ligand and antibody binding sites on the Tac receptor chain by mutational analysis. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5654–5658. doi: 10.1073/pnas.85.15.5654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharon M., Klausner R. D., Cullen B. R., Chizzonite R., Leonard W. J. Novel interleukin-2 receptor subunit detected by cross-linking under high-affinity conditions. Science. 1986 Nov 14;234(4778):859–863. doi: 10.1126/science.3095922. [DOI] [PubMed] [Google Scholar]
- Takeshita T., Goto Y., Tada K., Nagata K., Asao H., Sugamura K. Monoclonal antibody defining a molecule possibly identical to the p75 subunit of interleukin 2 receptor. J Exp Med. 1989 Apr 1;169(4):1323–1332. doi: 10.1084/jem.169.4.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka T., Saiki O., Doi S., Negoro S., Kishimoto S. Interleukin 2 functions through novel interleukin 2 binding molecules in T cells. J Immunol. 1988 Jan 15;140(2):470–473. [PubMed] [Google Scholar]
- Teshigawara K., Wang H. M., Kato K., Smith K. A. Interleukin 2 high-affinity receptor expression requires two distinct binding proteins. J Exp Med. 1987 Jan 1;165(1):223–238. doi: 10.1084/jem.165.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981 Mar 1;153(3):569–582. doi: 10.1084/jem.153.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsudo M., Goldman C. K., Bongiovanni K. F., Chan W. C., Winton E. F., Yagita M., Grimm E. A., Waldmann T. A. The p75 peptide is the receptor for interleukin 2 expressed on large granular lymphocytes and is responsible for the interleukin 2 activation of these cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5394–5398. doi: 10.1073/pnas.84.15.5394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsudo M., Kozak R. W., Goldman C. K., Waldmann T. A. Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9694–9698. doi: 10.1073/pnas.83.24.9694. [DOI] [PMC free article] [PubMed] [Google Scholar]