Skip to main content
Immunology logoLink to Immunology
. 1996 Apr;87(4):616–623. doi: 10.1046/j.1365-2567.1996.498566.x

Porcine CD3 epsilon: its characterization, expression and involvement in activation of porcine T lymphocytes.

P A Kirkham 1, H Takamatsu 1, H Yang 1, R M Parkhouse 1
PMCID: PMC1384142  PMID: 8675218

Abstract

The cloning, characterization and expression of porcine CD3 epsilon and establishment of its role in T-cell activation using an anti-porcine CD3 epsilon monoclonal antibody, as described here, provides a first step towards a greater understanding of the porcine immune response. Porcine CD3 epsilon was cloned from a porcine T-cell cDNA library by polymerase chain reaction and found to have up to 72% identity with other CD3 epsilon chains, retaining all the necessary primary structural motifs for correct functioning of porcine CD3 epsilon. When expressed in COS7 cells porcine CD3 epsilon was an intracellularly localized, monomeric 23,000 MW protein exhibiting no evidence of N-glycosylation. A monoclonal antibody, PPT3, recognized expressed porcine CD3 epsilon and activated porcine T cells as demonstrated by stimulation of calcium mobilization, an increase in protein tyrosine phosphorylation and proliferation. These results further reaffirm and identify CD3 epsilon as an important cell surface protein involved in signal transduction of activation signals in porcine T cells.

Full text

PDF
616

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkhout B., Alarcon B., Terhorst C. Transfection of genes encoding the T cell receptor-associated CD3 complex into COS cells results in assembly of the macromolecular structure. J Biol Chem. 1988 Jun 15;263(17):8528–8536. [PubMed] [Google Scholar]
  2. Clevers H. C., Dunlap S., Wileman T. E., Terhorst C. Human CD3-epsilon gene contains three miniexons and is transcribed from a non-TATA promoter. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8156–8160. doi: 10.1073/pnas.85.21.8156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clevers H., Alarcon B., Wileman T., Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Annu Rev Immunol. 1988;6:629–662. doi: 10.1146/annurev.iy.06.040188.003213. [DOI] [PubMed] [Google Scholar]
  4. Clevers H., Dunlap S., Saito H., Georgopoulos K., Wileman T., Terhorst C. Characterization and expression of the murine CD3-epsilon gene. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8623–8627. doi: 10.1073/pnas.85.22.8623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeFranco A. L. Signaling pathways activated by protein tyrosine phosphorylation in lymphocytes. Curr Opin Immunol. 1994 Jun;6(3):364–371. doi: 10.1016/0952-7915(94)90114-7. [DOI] [PubMed] [Google Scholar]
  6. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  7. Hein W. R., Tunnacliffe A. Invariant components of the sheep T-cell antigen receptor: cloning of the CD3 epsilon and Tcr zeta chains. Immunogenetics. 1993;37(4):279–284. doi: 10.1007/BF00187454. [DOI] [PubMed] [Google Scholar]
  8. Hirt W., Saalmüller A., Reddehase M. J. Distinct gamma/delta T cell receptors define two subsets of circulating porcine CD2-CD4-CD8- T lymphocytes. Eur J Immunol. 1990 Feb;20(2):265–269. doi: 10.1002/eji.1830200206. [DOI] [PubMed] [Google Scholar]
  9. Kirkham P. A., Santos-Argumedo L., Harnett M. M., Parkhouse R. M. Murine B-cell activation via CD38 and protein tyrosine phosphorylation. Immunology. 1994 Dec;83(4):513–516. [PMC free article] [PubMed] [Google Scholar]
  10. Klausner R. D., Samelson L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991 Mar 8;64(5):875–878. doi: 10.1016/0092-8674(91)90310-u. [DOI] [PubMed] [Google Scholar]
  11. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Letourneur F., Klausner R. D. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. Science. 1992 Jan 3;255(5040):79–82. doi: 10.1126/science.1532456. [DOI] [PubMed] [Google Scholar]
  13. Mallabiabarrena A., Fresno M., Alarcón B. An endoplasmic reticulum retention signal in the CD3 epsilon chain of the T-cell receptor. Nature. 1992 Jun 18;357(6379):593–596. doi: 10.1038/357593a0. [DOI] [PubMed] [Google Scholar]
  14. Mallabiabarrena A., Jiménez M. A., Rico M., Alarcón B. A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure. EMBO J. 1995 May 15;14(10):2257–2268. doi: 10.1002/j.1460-2075.1995.tb07220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mason D. Y., Cordell J., Brown M., Pallesen G., Ralfkiaer E., Rothbard J., Crumpton M., Gatter K. C. Detection of T cells in paraffin wax embedded tissue using antibodies against a peptide sequence from the CD3 antigen. J Clin Pathol. 1989 Nov;42(11):1194–1200. doi: 10.1136/jcp.42.11.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nash R. A., Scherf U., Storb R. Molecular cloning of the CD3 epsilon subunit of the T-cell receptor/CD3 complex in dog. Immunogenetics. 1991;33(5-6):396–398. doi: 10.1007/BF00216700. [DOI] [PubMed] [Google Scholar]
  17. Palacios R. Mechanisms by which accessory cells contribute in growth of resting T lymphocytes initiated by OKT3 antibody. Eur J Immunol. 1985 Jul;15(7):645–651. doi: 10.1002/eji.1830150702. [DOI] [PubMed] [Google Scholar]
  18. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  19. Prasad K. V., Janssen O., Kapeller R., Raab M., Cantley L. C., Rudd C. E. Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7366–7370. doi: 10.1073/pnas.90.15.7366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Samelson L. E., Phillips A. F., Luong E. T., Klausner R. D. Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4358–4362. doi: 10.1073/pnas.87.11.4358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sancho J., Franco R., Chatila T., Hall C., Terhorst C. The T cell receptor associated CD3-epsilon protein is phosphorylated upon T cell activation in the two tyrosine residues of a conserved signal transduction motif. Eur J Immunol. 1993 Jul;23(7):1636–1642. doi: 10.1002/eji.1830230736. [DOI] [PubMed] [Google Scholar]
  22. Santos-Argumedo L., Teixeira C., Preece G., Kirkham P. A., Parkhouse R. M. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J Immunol. 1993 Sep 15;151(6):3119–3130. [PubMed] [Google Scholar]
  23. Schwinzer R., Franklin R. A., Domenico J., Renz H., Gelfand E. W. Monoclonal antibodies directed to different epitopes in the CD3-TCR complex induce different states of competence in resting human T cells. J Immunol. 1992 Mar 1;148(5):1322–1328. [PubMed] [Google Scholar]
  24. Straus D. B., Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell. 1992 Aug 21;70(4):585–593. doi: 10.1016/0092-8674(92)90428-f. [DOI] [PubMed] [Google Scholar]
  25. Takamatsu H., Collen T., Tucker D. L., Denyer M. S. Characterization of long-term cultured bovine CD4-positive and CD8-positive T-cell lines and clones. Immunology. 1990 Feb;69(2):293–297. [PMC free article] [PubMed] [Google Scholar]
  26. Transy C., Moingeon P. E., Marshall B., Stebbins C., Reinherz E. L. Most anti-human CD3 monoclonal antibodies are directed to the CD3 epsilon subunit. Eur J Immunol. 1989 May;19(5):947–950. doi: 10.1002/eji.1830190525. [DOI] [PubMed] [Google Scholar]
  27. Tsoukas C. D., Landgraf B., Bentin J., Valentine M., Lotz M., Vaughan J. H., Carson D. A. Activation of resting T lymphocytes by anti-CD3 (T3) antibodies in the absence of monocytes. J Immunol. 1985 Sep;135(3):1719–1723. [PubMed] [Google Scholar]
  28. Wange R. L., Malek S. N., Desiderio S., Samelson L. E. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells. J Biol Chem. 1993 Sep 15;268(26):19797–19801. [PubMed] [Google Scholar]
  29. Weiss A., Imboden J. B. Cell surface molecules and early events involved in human T lymphocyte activation. Adv Immunol. 1987;41:1–38. doi: 10.1016/s0065-2776(08)60029-2. [DOI] [PubMed] [Google Scholar]
  30. Weiss A., Imboden J., Hardy K., Manger B., Terhorst C., Stobo J. The role of the T3/antigen receptor complex in T-cell activation. Annu Rev Immunol. 1986;4:593–619. doi: 10.1146/annurev.iy.04.040186.003113. [DOI] [PubMed] [Google Scholar]
  31. Wileman T., Kane L. P., Young J., Carson G. R., Terhorst C. Associations between subunit ectodomains promote T cell antigen receptor assembly and protect against degradation in the ER. J Cell Biol. 1993 Jul;122(1):67–78. doi: 10.1083/jcb.122.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES