Abstract
Studies were performed to determine the mechanism by which stearic acid (18:0) selectively inhibits T-dependent immune responses in vitro. Incubation of mitogen-activated B and T cells with 18:0 resulted in dissimilar patterns of incorporation of the saturated fatty acid into their membranes. High-performance liquid chromatography (HPLC) analyses of T cells showed an accumulation of disaturated [corrected] 18:0-containing phosphatidylcholine (PC) that replaced normal cellular PC. Less significant quantities of the same PC species were seen to accumulate in B-cell membranes; rather, they increased their proportion of oleic acid (18:1)-containing PC. The different lipid compositions of the lymphocyte cell membranes after exposure to 18:0 were correlated with their plasma membrane potentials. In T cells, the accumulation of disaturated [corrected], 18:0-containing PC coincided with a rapid (within 8 hr) collapse of membrane integrity, as determined by flow cytometry. The collapse of membrane integrity was found to be time and dose dependent. No such depolarization was observed in B cells which, by virtue of their desaturating ability, were able to avoid incorporating large amounts of disaturated [corrected] 18:0-containing phospholipids into their membranes. It is proposed that a lack of stearoyl-CoA desaturase in T cells precludes them from desaturating exogenously derived 18:0, thus leading to increased proportions of 18:0-containing disaturated [corrected] PC in their cell membranes. The increased abundance of this PC species may enhance membrane rigidity to an extent that plasma membrane integrity is significantly impaired, leading to a loss of membrane potential and ultimately cell function and viability.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borel J. F., Feurer C., Gubler H. U., Stähelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions. 1976 Jul;6(4):468–475. doi: 10.1007/BF01973261. [DOI] [PubMed] [Google Scholar]
- Buttke T. M., Cuchens M. A. Inhibition of lymphocyte proliferation by free fatty acids. II. Toxicity of stearic acid towards phytohaemagglutinin-activated T cells. Immunology. 1984 Nov;53(3):507–514. [PMC free article] [PubMed] [Google Scholar]
- Buttke T. M. Inhibition of lymphocyte proliferation by free fatty acids. I. Differential effects on mouse B and T lymphocytes. Immunology. 1984 Oct;53(2):235–242. [PMC free article] [PubMed] [Google Scholar]
- Buttke T. M., Mallett G. S., Cuchens M. A. Positive selection of mouse B and T lymphocytes and analysis of isolated populations by flow cytometry. J Immunol Methods. 1983 Mar 11;58(1-2):193–207. doi: 10.1016/0022-1759(83)90275-2. [DOI] [PubMed] [Google Scholar]
- Buttke T. M., Van Cleave S., Steelman L., McCubrey J. A. Absence of unsaturated fatty acid synthesis in murine T lymphocytes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6133–6137. doi: 10.1073/pnas.86.16.6133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen D. J., Loertscher R., Rubin M. F., Tilney N. L., Carpenter C. B., Strom T. B. Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann Intern Med. 1984 Nov;101(5):667–682. doi: 10.7326/0003-4819-101-5-667. [DOI] [PubMed] [Google Scholar]
- Damjanovich S., Aszalós A., Mulhern S. A., Szöllösi J., Balázs M., Trón L., Fulwyler M. J. Cyclosporin depolarizes human lymphocytes: earliest observed effect on cell metabolism. Eur J Immunol. 1987 Jun;17(6):763–768. doi: 10.1002/eji.1830170605. [DOI] [PubMed] [Google Scholar]
- Erickson K. L. Dietary fat modulation of immune response. Int J Immunopharmacol. 1986;8(6):529–543. doi: 10.1016/0192-0561(86)90023-8. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Gurr M. I. The role of lipids in the regulation of the immune system. Prog Lipid Res. 1983;22(4):257–287. doi: 10.1016/0163-7827(83)90007-3. [DOI] [PubMed] [Google Scholar]
- Kahan B. D., Flechner S. M., Lorber M. I., Jensen C., Golden D., Van Buren C. T. Complications of cyclosporin therapy. World J Surg. 1986 Jun;10(3):348–360. doi: 10.1007/BF01655294. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Bhalla D. K., Dragsten P., Hoover R. L., Karnovsky M. J. Model for capping derived from inhibition of surface receptor capping by free fatty acids. Proc Natl Acad Sci U S A. 1980 Jan;77(1):437–441. doi: 10.1073/pnas.77.1.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krönke M., Leonard W. J., Depper J. M., Arya S. K., Wong-Staal F., Gallo R. C., Waldmann T. A., Greene W. C. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5214–5218. doi: 10.1073/pnas.81.16.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuypers F. A., Roelofsen B., Op den Kamp J. A., Van Deenen L. L. The membrane of intact human erythrocytes tolerates only limited changes in the fatty acid composition of its phosphatidylcholine. Biochim Biophys Acta. 1984 Jan 25;769(2):337–347. doi: 10.1016/0005-2736(84)90315-8. [DOI] [PubMed] [Google Scholar]
- Lange L. G., Van Meer G., Op den Kamp J. A., Van Deenen L. L. Hemolysis of rat erythrocytes by replacement of the natural phosphatidylcholine by various phosphatidylcholines. Eur J Biochem. 1980 Sep;110(1):115–121. doi: 10.1111/j.1432-1033.1980.tb04846.x. [DOI] [PubMed] [Google Scholar]
- Mahoney E. M., Hamill A. L., Scott W. A., Cohn Z. A. Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4895–4899. doi: 10.1073/pnas.74.11.4895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mavis R. D., Bell R. M., Vagelos P. R. Effect of phospholipase C hydrolysis of membrane phospholipids on membranous enzymes. J Biol Chem. 1972 May 10;247(9):2835–2841. [PubMed] [Google Scholar]
- Meade C. J., Mertin J. Fatty acids and immunity. Adv Lipid Res. 1978;16:127–165. doi: 10.1016/b978-0-12-024916-9.50008-1. [DOI] [PubMed] [Google Scholar]
- Pourbohloul S., Mallett G. S., Buttke T. M. Inhibition of lymphocyte proliferation by free fatty acids. III. Modulation of thymus-dependent immune responses. Immunology. 1985 Dec;56(4):659–666. [PMC free article] [PubMed] [Google Scholar]
- Shapiro H. M., Natale P. J., Kamentsky L. A. Estimation of membrane potentials of individual lymphocytes by flow cytometry. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5728–5730. doi: 10.1073/pnas.76.11.5728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takamura H., Narita H., Urade R., Kito M. Quantitative analysis of polyenoic phospholipid molecular species by high performance liquid chromatography. Lipids. 1986 May;21(5):356–361. doi: 10.1007/BF02535701. [DOI] [PubMed] [Google Scholar]
- Tsang W. M., Weyman C., Smith A. D. Effect of fatty acid mixtures on phytohaemagglutinin-stimulated lymphocytes of different species. Biochem Soc Trans. 1977;5(1):153–154. doi: 10.1042/bst0050153. [DOI] [PubMed] [Google Scholar]
- Yang M. C., Cuchens M. A., Buttke T. M. Kinetics of membrane immunoglobulin capping on murine B lymphocytes. Effects of phospholipid fatty acid replacement. J Biol Chem. 1986 Mar 5;261(7):3320–3324. [PubMed] [Google Scholar]
