Skip to main content
Immunology logoLink to Immunology
. 1996 Feb;87(2):296–302. doi: 10.1046/j.1365-2567.1996.456544.x

Role of intracellular calcium as a priming signal for the induction of nitric oxide synthesis in murine peritoneal macrophages.

Y C Park 1, C D Jun 1, H S Kang 1, H D Kim 1, H M Kim 1, H T Chung 1
PMCID: PMC1384288  PMID: 8698394

Abstract

Because the role of intracellular Ca2+ in the two-signal process for the induction of nitric oxide (NO) synthesis is controversial, this study was undertaken to examine the role of Ca2+ in the transcriptional regulation of inducible NO synthase (iNOS) in murine peritoneal macrophages. Treatment of the cells with thapsigargin (TG) or 2,5-di-(t-butyl)-1,4-benzodihydroquinone (tBuBHQ), which are the specific and potent Ca(2+)-ATPase inhibitors of endoplasmic reticulum (ER), showed modest effects on tumoricidal function, whereas TG or tBuBHQ in combination with interferon-gamma (IFN-gamma) or lipopolysaccharide (LPS) showed marked effects on tumoricidal function of the cells. The tumoricidal effects of the activated macrophages were correlated with the amount of NO synthesis, and totally abrogated by the use of NOS inhibitor, NG-monomethyl-L-arginine (NGMMA). The increases in NO synthesis was reflected as increased amounts of iNOS mRNA by Northern blotting. To confirm that iNOS induction was due to the changes in the intracellular Ca2+ level, the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca2+ chelator, was used. Blocking the increase of cytosolic free Ca2+ significantly decreased the induction of NO synthesis. To demonstrate that intracellular Ca2+ acts as a 'priming' signal rather than a 'triggering' signal on the induction of NO synthesis by murine peritoneal macrophages, we designed several experiments. When the cells were treated with TG 6 hr after the treatment with IFN-gamma, there was no increase in NO synthesis. In addition, when the cells were treated with TG or LPS 6 hr after treatment with tBuBHQ, a synergistic increase on NO synthesis was shown only in the case of LPS. When phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, was added to the cells 6 hr after the treatment with TG, there was a marked co-operative induction of NO synthesis, even though PMA alone has no effect. Based on the results obtained in this study, we suggest that cytosolic Ca2+ might be enough for the expression of iNOS gene as a priming signal and PKC might be involved in the induction of NO synthesis as a triggering signal by post-transcriptional modification of iNOS mRNA or iNOS itself in the activated murine peritoneal macrophages.

Full text

PDF
296

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  2. Buchmüller-Rouiller Y., Betz-Corradin S., Mauël J. Differential effects of prostaglandins on macrophage activation induced by calcium ionophore A23187 or IFN-gamma. J Immunol. 1992 Feb 15;148(4):1171–1175. [PubMed] [Google Scholar]
  3. Celada A., Gray P. W., Rinderknecht E., Schreiber R. D. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med. 1984 Jul 1;160(1):55–74. doi: 10.1084/jem.160.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Cho H. J., Xie Q. W., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med. 1992 Aug 1;176(2):599–604. doi: 10.1084/jem.176.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox G. W., Melillo G., Chattopadhyay U., Mullet D., Fertel R. H., Varesio L. Tumor necrosis factor-alpha-dependent production of reactive nitrogen intermediates mediates IFN-gamma plus IL-2-induced murine macrophage tumoricidal activity. J Immunol. 1992 Nov 15;149(10):3290–3296. [PubMed] [Google Scholar]
  7. Drysdale B. E., Yapundich R. A., Shin M. L., Shin H. S. Lipopolysaccharide-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity. J Immunol. 1987 Feb 1;138(3):951–956. [PubMed] [Google Scholar]
  8. Duffus J. H., Patterson L. J. Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium. Nature. 1974 Oct 18;251(5476):626–627. doi: 10.1038/251626a0. [DOI] [PubMed] [Google Scholar]
  9. Ghosh T. K., Bian J. H., Short A. D., Rybak S. L., Gill D. L. Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth. J Biol Chem. 1991 Dec 25;266(36):24690–24697. [PubMed] [Google Scholar]
  10. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  11. Green S. J., Crawford R. M., Hockmeyer J. T., Meltzer M. S., Nacy C. A. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. J Immunol. 1990 Dec 15;145(12):4290–4297. [PubMed] [Google Scholar]
  12. Hogan M. M., Vogel S. N. Lipid A-associated proteins provide an alternate "second signal" in the activation of recombinant interferon-gamma-primed, C3H/HeJ macrophages to a fully tumoricidal state. J Immunol. 1987 Dec 1;139(11):3697–3702. [PubMed] [Google Scholar]
  13. Hortelano S., Genaro A. M., Boscá L. Phorbol esters induce nitric oxide synthase and increase arginine influx in cultured peritoneal macrophages. FEBS Lett. 1993 Apr 5;320(2):135–139. doi: 10.1016/0014-5793(93)80078-9. [DOI] [PubMed] [Google Scholar]
  14. Jackson T. R., Patterson S. I., Thastrup O., Hanley M. R. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J. 1988 Jul 1;253(1):81–86. doi: 10.1042/bj2530081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jun C. D., Choi B. M., Hoon-Ryu, Um J. Y., Kwak H. J., Lee B. S., Paik S. G., Kim H. M., Chung H. T. Synergistic cooperation between phorbol ester and IFN-gamma for induction of nitric oxide synthesis in murine peritoneal macrophages. J Immunol. 1994 Oct 15;153(8):3684–3690. [PubMed] [Google Scholar]
  16. Keppens S., Vandenheede J. R., De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta. 1977 Feb 28;496(2):448–457. doi: 10.1016/0304-4165(77)90327-0. [DOI] [PubMed] [Google Scholar]
  17. Llopis J., Chow S. B., Kass G. E., Gahm A., Orrenius S. Comparison between the effects of the microsomal Ca(2+)-translocase inhibitors thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone on cellular calcium fluxes. Biochem J. 1991 Jul 15;277(Pt 2):553–556. doi: 10.1042/bj2770553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maino V. C., Green N. M., Crumpton M. J. The role of calcium ions in initiating transformation of lymphocytes. Nature. 1974 Sep 27;251(5473):324–327. doi: 10.1038/251324b0. [DOI] [PubMed] [Google Scholar]
  19. Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
  20. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  21. Narumi S., Finke J. H., Hamilton T. A. Interferon gamma and interleukin 2 synergize to induce selective monokine expression in murine peritoneal macrophages. J Biol Chem. 1990 Apr 25;265(12):7036–7041. [PubMed] [Google Scholar]
  22. Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
  23. Oswald I. P., Afroun S., Bray D., Petit J. F., Lemaire G. Low response of BALB/c macrophages to priming and activating signals. J Leukoc Biol. 1992 Sep;52(3):315–322. doi: 10.1002/jlb.52.3.315. [DOI] [PubMed] [Google Scholar]
  24. Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
  25. Raddassi K., Berthon B., Petit J. F., Lemaire G. Role of calcium in the activation of mouse peritoneal macrophages: induction of NO synthase by calcium ionophores and thapsigargin. Cell Immunol. 1994 Feb;153(2):443–455. doi: 10.1006/cimm.1994.1041. [DOI] [PubMed] [Google Scholar]
  26. Resendez E., Jr, Ting J., Kim K. S., Wooden S. K., Lee A. S. Calcium ionophore A23187 as a regulator of gene expression in mammalian cells. J Cell Biol. 1986 Dec;103(6 Pt 1):2145–2152. doi: 10.1083/jcb.103.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schönthal A., Sugarman J., Brown J. H., Hanley M. R., Feramisco J. R. Regulation of c-fos and c-jun protooncogene expression by the Ca(2+)-ATPase inhibitor thapsigargin. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7096–7100. doi: 10.1073/pnas.88.16.7096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Short A. D., Bian J., Ghosh T. K., Waldron R. T., Rybak S. L., Gill D. L. Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4986–4990. doi: 10.1073/pnas.90.11.4986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Somers S. D., Weiel J. E., Hamilton T. A., Adams D. O. Phorbol esters and calcium ionophore can prime murine peritoneal macrophages for tumor cell destruction. J Immunol. 1986 Jun 1;136(11):4199–4205. [PubMed] [Google Scholar]
  30. Stuehr D. J., Cho H. J., Kwon N. S., Weise M. F., Nathan C. F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. doi: 10.1073/pnas.88.17.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stuehr D. J., Marletta M. A. Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Res. 1987 Nov 1;47(21):5590–5594. [PubMed] [Google Scholar]
  33. Vodovotz Y., Kwon N. S., Pospischil M., Manning J., Paik J., Nathan C. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-gamma and bacterial lipopolysaccharide. J Immunol. 1994 Apr 15;152(8):4110–4118. [PubMed] [Google Scholar]
  34. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES