Skip to main content
Immunology logoLink to Immunology
. 1991 Jun;73(2):180–185.

A soluble factor from Trypanosoma brucei rhodesiense that prevents progression of activated human T lymphocytes through the cell cycle.

M B Sztein 1, F Kierszenbaum 1
PMCID: PMC1384462  PMID: 2071163

Abstract

African sleeping sickness is accompanied by a severe immunosuppression. As part of our efforts to examine the mechanisms by which this suppressive state is induced, we studied alterations in human T-lymphocyte function caused by Trypanosoma brucei rhodesiense. To this end, we used an in vitro system in which phytohaemagglutinin (PHA)-stimulated human peripheral blood mononuclear cells (PBMC) were cultured in a medium containing soluble, non-dialysable parasite products. We were able to demonstrate significant suppression of both lympho-proliferation and interleukin-2 receptor (IL-2R) expression. These effects were found to be dose-dependent and reversible after 48 hr of culture. The suppressive effects of living trypanosomes and the soluble parasite products on lympho-proliferation and interleukin-2 receptor expression were similar in that both precluded the entry of PHA-activated PBMC into the cell cycle. Eighty to ninety-eight per cent of the activated cells remained arrested in the G0/G1a (early G1) phase even 48 hr after stimulation, i.e. when last tested. Parasite-induced expression could not be overcome by the addition of recombinant human IL-2. These results suggest that immunosuppression associated with African trypanosomiasis may result from parasite-induced alteration of very early events during lymphocyte activation, leading to a virtually complete block in cell cycle progression and inhibition of IL-2R expression.

Full text

PDF
180

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakhiet M., Olsson T., van der Meide P., Kristensson K. Depletion of CD8+ T cells suppresses growth of Trypanosoma brucei brucei and interferon-gamma) production in infected rats. Clin Exp Immunol. 1990 Aug;81(2):195–199. doi: 10.1111/j.1365-2249.1990.tb03317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bancroft G. J., Sutton C. J., Morris A. G., Askonas B. A. Production of interferons during experimental African trypanosomiasis. Clin Exp Immunol. 1983 Apr;52(1):135–143. [PMC free article] [PubMed] [Google Scholar]
  3. Corsini A. C., Clayton C., Askonas B. A., Ogilvie B. M. Suppressor cells and loss of B-cell potential in mice infected with Trypanosoma brucei. Clin Exp Immunol. 1977 Jul;29(1):122–131. [PMC free article] [PubMed] [Google Scholar]
  4. Crissman H. A., Steinkamp J. A. Rapid, one step staining procedures for analysis of cellular DNA and protein by single and dual laser flow cytometry. Cytometry. 1982 Sep;3(2):84–90. doi: 10.1002/cyto.990030204. [DOI] [PubMed] [Google Scholar]
  5. Darzynkiewicz Z., Andreeff M. Multiparameter flow cytometry. Part I: application in analysis of the cell cycle. Clin Bull. 1981;11(2):47–57. [PubMed] [Google Scholar]
  6. Depper J. M., Leonard W. J., Drogula C., Krönke M., Waldmann T. A., Greene W. C. Interleukin 2 (IL-2) augments transcription of the IL-2 receptor gene. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4230–4234. doi: 10.1073/pnas.82.12.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudson K. M., Byner C., Freeman J., Terry R. J. Immunodepression, high IgM levels and evasion of the immune response in murine trypanosomiasis. Nature. 1976 Nov 18;264(5583):256–258. doi: 10.1038/264256a0. [DOI] [PubMed] [Google Scholar]
  8. Jayawardena A. N., Waksman B. H. Suppressor cells in experimentally trypanosomiasis. Nature. 1977 Feb 10;265(5594):539–541. doi: 10.1038/265539a0. [DOI] [PubMed] [Google Scholar]
  9. Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
  10. Lavergne J. A., del Llano A. M. Assessment of cellular activation by flow cytometric methods. Pathobiology. 1990;58(2):107–117. doi: 10.1159/000163572. [DOI] [PubMed] [Google Scholar]
  11. Leonard W. J., Krönke M., Peffer N. J., Depper J. M., Greene W. C. Interleukin 2 receptor gene expression in normal human T lymphocytes. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6281–6285. doi: 10.1073/pnas.82.18.6281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Malek T. R., Ashwell J. D. Interleukin 2 upregulates expression of its receptor on a T cell clone. J Exp Med. 1985 Jun 1;161(6):1575–1580. doi: 10.1084/jem.161.6.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mitchell L. A., Pearson T. W., Gauldie J. Interleukin-1 and interleukin-2 production in resistant and susceptible inbred mice infected with Trypanosoma congolense. Immunology. 1986 Feb;57(2):291–296. [PMC free article] [PubMed] [Google Scholar]
  14. Neckers L. M., Funkhouser W. K., Trepel J. B., Cossman J., Gratzner H. G. Significant non-S-phase DNA synthesis visualized by flow cytometry in activated and in malignant human lymphoid cells. Exp Cell Res. 1985 Feb;156(2):429–438. doi: 10.1016/0014-4827(85)90549-x. [DOI] [PubMed] [Google Scholar]
  15. Pollack A., Moulis H., Prudhomme D. L., Block N. L., Irvin G. L., 3rd Flow cytometric analysis of cell kinetic responses using measurements of correlated DNA and nuclear protein. Ann N Y Acad Sci. 1986;468:55–66. doi: 10.1111/j.1749-6632.1986.tb42028.x. [DOI] [PubMed] [Google Scholar]
  16. Reem G. H., Yeh N. H., Urdal D. L., Kilian P. L., Farrar J. J. Induction and upregulation by interleukin 2 of high-affinity interleukin 2 receptors on thymocytes and T cells. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8663–8666. doi: 10.1073/pnas.82.24.8663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sileghem M., Darji A., Remels L., Hamers R., De Baetselier P. Different mechanisms account for the suppression of interleukin 2 production and the suppression of interleukin 2 receptor expression in Trypanosoma brucei-infected mice. Eur J Immunol. 1989 Jan;19(1):119–124. doi: 10.1002/eji.1830190119. [DOI] [PubMed] [Google Scholar]
  18. Sileghem M., Hamers R., De Baetselier P. Experimental Trypanosoma brucei infections selectively suppress both interleukin 2 production and interleukin 2 receptor expression. Eur J Immunol. 1987 Oct;17(10):1417–1421. doi: 10.1002/eji.1830171005. [DOI] [PubMed] [Google Scholar]
  19. Sizemore R. C., Mansfield J. M. Lymphocyte function in experimental African trypanosomiasis. VII. Loss of antigen-nonspecific suppressor-T-cell activity. Cell Immunol. 1984 Sep;87(2):684–691. doi: 10.1016/0008-8749(84)90036-4. [DOI] [PubMed] [Google Scholar]
  20. Smith K. A., Cantrell D. A. Interleukin 2 regulates its own receptors. Proc Natl Acad Sci U S A. 1985 Feb;82(3):864–868. doi: 10.1073/pnas.82.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sztein M. B., Serrate S. A., Goldstein A. L. Modulation of interleukin 2 receptor expression on normal human lymphocytes by thymic hormones. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6107–6111. doi: 10.1073/pnas.83.16.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES