Skip to main content
Immunology logoLink to Immunology
. 1991 May;73(1):12–18.

An influenza haemagglutinin-specific IgG enhances class I MHC-restricted CTL killing in vitro.

L McLain 1, N J Dimmock 1
PMCID: PMC1384511  PMID: 1646161

Abstract

Lungs of H-2k mice co-inoculated with type A/WSN influenza virus+detective interfering WSN virus contain haemagglutinin (HA)-specific IgG which have three different activities. These have been purified by adsorbtion and elution using different forms of HA. The first IgG recognizes HA in a form present on H-2k cells infected with a vaccinia virus recombinant expressing the WSN HA gene (vaccinia-HA virus), but not on virus particles, and enhances class I major histocompatibility complex (MHC)-restricted killing of WSN-infected H-2k target cells by primary cytotoxic T lymphocytes (CTL) from the lungs of WSN-infected H-2k mice; it also confers on primary CTL from the lungs of WSN-infected H-2d mice the ability to lyse WSN-infected H-2k targets. This IgG is therefore analogous to the T-cell receptor in that it is antigen specific and MHC restricted. A second IgG recognizes HA in a form present on both H-2k and H-2d cells infected with the vaccinia-HA virus but not present on virus particles and inhibits CTL lysis of WSN-infected syngeneic target cells. Only the third binds to virus particles; this inhibits agglutination of red cells, but is non-neutralizing. It also inhibits CTL lysis of WSN-infected syngeneic targets. Thus we present evidence that HA-specific IgG may have a significant role in regulating CTL responses to influenza virus in vivo and that one of these IgG is MHC-restricted in its recognition of viral antigen. Finally, in vivo significance of these antibodies is indicated by the finding that adoptively transferred CTL-enhancing IgG protects mice from lethal WSN infection.

Full text

PDF
12

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett B. C., Graham C. M., Burt D. S., Skehel J. J., Thomas D. B. The immune response of BALB/c mice to influenza hemagglutinin: commonality of the B cell and T cell repertoires and their relevance to antigenic drift. Eur J Immunol. 1989 Mar;19(3):515–521. doi: 10.1002/eji.1830190316. [DOI] [PubMed] [Google Scholar]
  2. Barrett A. D., Dimmock N. J. Defective interfering viruses and infections of animals. Curr Top Microbiol Immunol. 1986;128:55–84. doi: 10.1007/978-3-642-71272-2_2. [DOI] [PubMed] [Google Scholar]
  3. Casali P., Rice G. P., Oldstone M. B. Viruses disrupt functions of human lymphocytes. Effects of measles virus and influenza virus on lymphocyte-mediated killing and antibody production. J Exp Med. 1984 May 1;159(5):1322–1337. doi: 10.1084/jem.159.5.1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature. 1984 Dec 6;312(5994):548–551. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  5. Dickler H. B. Lymphocyte receptors for immunoglobulin. Adv Immunol. 1976;24:167–214. doi: 10.1016/s0065-2776(08)60330-2. [DOI] [PubMed] [Google Scholar]
  6. Dimmock N. J., Beck S., McLain L. Protection of mice from lethal influenza: evidence that defective interfering virus modulates the immune response and not virus multiplication. J Gen Virol. 1986 May;67(Pt 5):839–850. doi: 10.1099/0022-1317-67-5-839. [DOI] [PubMed] [Google Scholar]
  7. Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
  8. Effros R. B., Frankel M. E., Gerhard W., Doherty P. C. Inhibition of influenza-immune T cell effector function by virus-specific hybridoma antibody. J Immunol. 1979 Sep;123(3):1343–1346. [PubMed] [Google Scholar]
  9. Finberg R., Weiner H. L., Burakoff S. J., Fields B. N. Type-specific reovirus antiserum blocks the cytotoxic T-cell-target cell interaction: evidence for the association of the viral hemagglutinin of a nonenveloped virus with the cell surface. Infect Immun. 1981 Feb;31(2):646–649. doi: 10.1128/iai.31.2.646-649.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graham C. M., Barnett B. C., Hartlmayr I., Burt D. S., Faulkes R., Skehel J. J., Thomas D. B. The structural requirements for class II (I-Ad)-restricted T cell recognition of influenza hemagglutinin: B cell epitopes define T cell epitopes. Eur J Immunol. 1989 Mar;19(3):523–528. doi: 10.1002/eji.1830190317. [DOI] [PubMed] [Google Scholar]
  11. Hale A. H., Witte O. N., Baltimore D., Eisen H. N. Vesicular stomatitis virus glycoprotein is necessary for H-2-restricted lysis of infected cells by cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1978 Feb;75(2):970–974. doi: 10.1073/pnas.75.2.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang A. S., Baltimore D. Defective viral particles and viral disease processes. Nature. 1970 Apr 25;226(5243):325–327. doi: 10.1038/226325a0. [DOI] [PubMed] [Google Scholar]
  13. Koszinowski U., Thomssen R. Target cell-dependent T cell-mediated lysis of vaccinia virus-infected cells. Eur J Immunol. 1975 Apr;5(4):245–251. doi: 10.1002/eji.1830050405. [DOI] [PubMed] [Google Scholar]
  14. McLain L., Armstrong S. J., Dimmock N. J. One defective interfering particle per cell prevents influenza virus-mediated cytopathology: an efficient assay system. J Gen Virol. 1988 Jun;69(Pt 6):1415–1419. doi: 10.1099/0022-1317-69-6-1415. [DOI] [PubMed] [Google Scholar]
  15. McLain L., Dimmock N. J. Protection of mice from lethal influenza by adoptive transfer of non-neutralizing haemagglutination-inhibiting IgG obtained from the lungs of infected animals treated with defective interfering virus. J Gen Virol. 1989 Oct;70(Pt 10):2615–2624. doi: 10.1099/0022-1317-70-10-2615. [DOI] [PubMed] [Google Scholar]
  16. Nash A. A., Gell P. G. Cell-mediated immunity in herpes simplex virus-infected mice: suppression of delayed hypersensitivity by an antigen-specific B lymphocyte. J Gen Virol. 1980 Jun;48(Pt 2):359–364. doi: 10.1099/0022-1317-48-2-359. [DOI] [PubMed] [Google Scholar]
  17. Pang T., Blanden R. V. Regulation of the T-cell response to ectromelia virus infection. I. Feedback suppression by effector T cells. J Exp Med. 1976 Mar 1;143(3):469–481. doi: 10.1084/jem.143.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perrault J. Origin and replication of defective interfering particles. Curr Top Microbiol Immunol. 1981;93:151–207. doi: 10.1007/978-3-642-68123-3_7. [DOI] [PubMed] [Google Scholar]
  19. Senik A., Neauport-Sautes C. Association between H-2 and vaccinia virus-induced antigens on the surface of infected cells. J Immunol. 1979 Apr;122(4):1461–1467. [PubMed] [Google Scholar]
  20. Sherman L. A., Vitiello A., Klinman N. R. T-cell and B-cell responses to viral antigens at the clonal level. Annu Rev Immunol. 1983;1:63–86. doi: 10.1146/annurev.iy.01.040183.000431. [DOI] [PubMed] [Google Scholar]
  21. Spits H., van Schooten W., Keizer H., van Seventer G., van de Rijn M., Terhorst C., de Vries J. E. Alloantigen recognition is preceded by nonspecific adhesion of cytotoxic T cells and target cells. Science. 1986 Apr 18;232(4748):403–405. doi: 10.1126/science.3485822. [DOI] [PubMed] [Google Scholar]
  22. Stephens E. B., Compans R. W., Earl P., Moss B. Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO J. 1986 Feb;5(2):237–245. doi: 10.1002/j.1460-2075.1986.tb04204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sweetser M. T., Braciale V. L., Braciale T. J. Class I major histocompatibility complex-restricted T lymphocyte recognition of the influenza hemagglutinin. Overlap between class I cytotoxic T lymphocytes and antibody sites. J Exp Med. 1989 Oct 1;170(4):1357–1368. doi: 10.1084/jem.170.4.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tamminen W. L., Wraith D., Barber B. H. Searching for MHC-restricted anti-viral antibodies: antibodies recognizing the nucleoprotein of influenza virus dominate the serological response of C57BL/6 mice to syngeneic influenza-infected cells. Eur J Immunol. 1987 Jul;17(7):999–1006. doi: 10.1002/eji.1830170716. [DOI] [PubMed] [Google Scholar]
  25. Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
  26. Unkeless J. C., Scigliano E., Freedman V. H. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988;6:251–281. doi: 10.1146/annurev.iy.06.040188.001343. [DOI] [PubMed] [Google Scholar]
  27. Voss E. W., Jr Anti-metatype antibody reactivity: a model for T-cell receptor recognition. Immunol Today. 1990 Oct;11(10):355–357. doi: 10.1016/0167-5699(90)90140-5. [DOI] [PubMed] [Google Scholar]
  28. Wiley D. C., Wilson I. A., Skehel J. J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981 Jan 29;289(5796):373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES