Skip to main content
Immunology logoLink to Immunology
. 1991 Jul;73(3):363–365.

Human T-cell responses to ragweed allergens: Amb V homologues.

S K Huang 1, D G Marsh 1
PMCID: PMC1384556  PMID: 1879880

Abstract

Specific IgE and IgG responses to highly purified Ambrosia (ragweed) allergens, Amb a V, Amb t V and Amb p V from the artemisiifolia (short), trifida (giant) and psilostachya (western) species are strongly associated with HLA-DR2 and Dw2 (DR2.2) in allergic Caucasoid individuals. To investigate the molecular basis of these HLA associations, we examined the human T-cell responses to these Amb V homologues using three Amb a V-specific, DR alpha beta I 2.2-restricted T-cell clones from an atopic patient. We first examined the cross-reactivity of Amb a V-specific T-cell clones upon challenge with the Amb a V homologues, Amb t V and Amb p V, in the presence of autologous antigen-presenting cells (APC). Neither Amb t V nor Amb p V was able to stimulate the T-cell clones directly. However, both Amb t V and Amb p V specifically blocked, in a dose-dependent fashion, the ability of APC to present Amb a V to all three T-cell clones. Taken together, these results suggest that Amb t V and Amb p V possess distinct T-cell epitopes, but that all Amb V homologues share similar or identical regions (agretopes) interacting with the DR alpha beta I 2.2 (DR alpha beta I 1501) heterodimer. The agretope was potentially localized to a 14-residue C-terminal Amb a V peptide (with Ala-Cys substitutions), which was able to block presentation of native Amb a V by the APC to the T-cell clones.

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A. A., Kihara T. K., Marsh D. G. Immunochemical studies of Lolium perenne (rye grass) pollen allergens, Lol p I, II, and III. J Immunol. 1987 Dec 15;139(12):4034–4041. [PubMed] [Google Scholar]
  2. Buus S., Sette A., Grey H. M. The interaction between protein-derived immunogenic peptides and Ia. Immunol Rev. 1987 Aug;98:115–141. doi: 10.1111/j.1600-065x.1987.tb00522.x. [DOI] [PubMed] [Google Scholar]
  3. DeLisi C., Berzofsky J. A. T-cell antigenic sites tend to be amphipathic structures. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7048–7052. doi: 10.1073/pnas.82.20.7048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goodfriend L., Choudhury A. M., Klapper D. G., Coulter K. M., Dorval G., Del Carpio J., Osterland C. K. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol Immunol. 1985 Aug;22(8):899–906. doi: 10.1016/0161-5890(85)90076-8. [DOI] [PubMed] [Google Scholar]
  5. Ishizaka K. Regulation of IgE synthesis. Annu Rev Immunol. 1984;2:159–182. doi: 10.1146/annurev.iy.02.040184.001111. [DOI] [PubMed] [Google Scholar]
  6. Marsh D. G., Hsu S. H., Roebber M., Ehrlich-Kautzky E., Freidhoff L. R., Meyers D. A., Pollard M. K., Bias W. B. HLA-Dw2: a genetic marker for human immune response to short ragweed pollen allergen Ra5. I. Response resulting primarily from natural antigenic exposure. J Exp Med. 1982 May 1;155(5):1439–1451. doi: 10.1084/jem.155.5.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marsh D. G., Zwollo P., Huang S. K., Ansari A. A. Molecular genetics of human immune responsiveness to allergens. Ciba Found Symp. 1989;147:171–187. doi: 10.1002/9780470513866.ch11. [DOI] [PubMed] [Google Scholar]
  8. Mole L. E., Goodfriend L., Lapkoff C. B., Kehoe J. M., Capra J. D. The amino acid sequence of ragweed pollen allergen Ra5. Biochemistry. 1975 Mar 25;14(6):1216–1220. doi: 10.1021/bi00677a019. [DOI] [PubMed] [Google Scholar]
  9. Naquet P., Ellis J., Singh B., Hodges R. S., Delovitch T. L. Processing and presentation of insulin. I. Analysis of immunogenic peptides and processing requirements for insulin A loop-specific T cells. J Immunol. 1987 Dec 15;139(12):3955–3963. [PubMed] [Google Scholar]
  10. Roebber M., Klapper D. G., Goodfriend L., Bias W. B., Hsu S. H., Marsh D. G. Immunochemical and genetic studies of Amb.t. V (Ra5G), an Ra5 homologue from giant ragweed pollen. J Immunol. 1985 May;134(5):3062–3069. [PubMed] [Google Scholar]
  11. Rothbard J. B., Lechler R. I., Howland K., Bal V., Eckels D. D., Sekaly R., Long E. O., Taylor W. R., Lamb J. R. Structural model of HLA-DR1 restricted T cell antigen recognition. Cell. 1988 Feb 26;52(4):515–523. doi: 10.1016/0092-8674(88)90464-3. [DOI] [PubMed] [Google Scholar]
  12. Régnier-Vigouroux A., el Ayeb M., Defendini M. L., Granier C., Pierres M. Processing by accessory cells for presentation to murine T cells of apamin, a disulfide-bonded 18 amino acid peptide. J Immunol. 1988 Feb 15;140(4):1069–1075. [PubMed] [Google Scholar]
  13. Schwartz R. H. T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. Annu Rev Immunol. 1985;3:237–261. doi: 10.1146/annurev.iy.03.040185.001321. [DOI] [PubMed] [Google Scholar]
  14. Sustiel A., Rocklin R. T cell responses in allergic rhinitis, asthma and atopic dermatitis. Clin Exp Allergy. 1989 Jan;19(1):11–18. doi: 10.1111/j.1365-2222.1989.tb02337.x. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES