Abstract
Thirteen immunoglobulin-secreting mycoplasma-free human cell lines were treated with increasing concentrations of lymphoblastoid interferon-alpha (IFN-alpha) in order to study the activity of their CD73 ecto-5'-nucleotidase (5'N), their rate of growth and their immunoglobulin (Ig) production. Although IFN-alpha did not immediately affect the activity of the 5'N on the cell plasma membranes, the class of Ig secreted by the cell lines determined whether culturing the cells in the presence of IFN-alpha gave a small increase in the 5'N enzyme activity (IgM), or had no effect (IgE), or showed a marked decrease in activity (IgG). The 5'N activity of two IgG4-secreting clones was more suppressed by IFN-alpha than that of the four IgG1-secreting clones. The clone with the highest 5'N was killed by IFN-alpha. A high 5'N activity inhibited the growth rate of the cells, since the rate of growth of the three IgG-producing lines with high 5'N was increased when their 5'N was inhibited by increasing concentrations of IFN-alpha. The growth rate of three other Ig-producing lines was uninhibited by up to 10(5) U/ml IFN-alpha, whereas the rest were partially or strongly inhibited. Excluding the clone which died, 10/11 lines or cultures increased their Ig/cell by a mean of 25% at 100 U/ml IFN-alpha; their total Ig production also increased despite any growth inhibition. One IgG-secreting clone decreased its Ig production at 100 U/ml IFN-alpha by 11%. The Ig/cell of 4/5 of the cell lines increased with IFN-alpha concentrations up to at least 10(4) U/ml. The increase in Ig/cell was not related to the class of Ig, the growth rate of the cells or the amount of 5'N.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams A., Strander H., Cantell K. Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon. J Gen Virol. 1975 Aug;28(2):207–217. doi: 10.1099/0022-1317-28-2-207. [DOI] [PubMed] [Google Scholar]
- Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
- Dianzani U., Massaia M., Pileri A., Grossi C. E., Clement L. T. Differential expression of ecto-5' nucleotidase activity by functionally and phenotypically distinct subpopulations of human Leu-2+/T8+ lymphocytes. J Immunol. 1986 Jul 15;137(2):484–489. [PubMed] [Google Scholar]
- Haeffner E. W., Doenges K. H., Buchholz J. Difference in cell surface 5'-nucleotidase activity, protein iodination and membrane properties between mouse lymphoma and rat adenocarcinoma cell variants with low and high-metastatic potential. Int J Biochem. 1988;20(9):929–935. doi: 10.1016/0020-711x(88)90177-2. [DOI] [PubMed] [Google Scholar]
- Härfast B., Huddlestone J. R., Casali P., Merigan T. C., Oldstone M. B. Interferon acts directly on human B lymphocytes to modulate immunoglobulin synthesis. J Immunol. 1981 Nov;127(5):2146–2150. [PubMed] [Google Scholar]
- Johansson K. E., Bölske G. Evaluation and practical aspects of the use of a commercial DNA probe for detection of mycoplasma infections in cell cultures. J Biochem Biophys Methods. 1989 Aug-Sep;19(2-3):185–199. doi: 10.1016/0165-022x(89)90025-0. [DOI] [PubMed] [Google Scholar]
- Johnson S. M. A B-cell hybridoma product inhibiting antibody secretion via 5'-nucleotidase. Clin Exp Immunol. 1985 Nov;62(2):412–420. [PMC free article] [PubMed] [Google Scholar]
- Johnson S. M., North M. E., Asherson G. L., Allsop J., Watts R. W., Webster A. D. Lymphocyte purine 5'-nucleotidase edficiency in primary hypogammaglobulinaemia. Lancet. 1977 Jan 22;1(8004):168–170. doi: 10.1016/s0140-6736(77)91765-2. [DOI] [PubMed] [Google Scholar]
- Kehrl J. H., Muraguchi A., Goldsmith P. K., Fauci A. S. The direct effects of interleukin 1, interleukin 2, interferon-alpha, interferon-gamma, B-cell growth factor, and a B-cell differentiation factor on resting and activated human B cells. Cell Immunol. 1985 Nov;96(1):38–48. doi: 10.1016/0008-8749(85)90338-7. [DOI] [PubMed] [Google Scholar]
- Kumar V., Lust J., Gifaldi A., Bennett M., Sonnenfeld G. Lack of correlation between mycoplasma induced IFN-gamma production in vitro and natural killer cell activity against FLD-3 cells. Immunobiology. 1983 Dec;165(5):445–458. doi: 10.1016/s0171-2985(83)80068-0. [DOI] [PubMed] [Google Scholar]
- Low M. G., Finean J. B. Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta. 1978 Apr 20;508(3):565–570. doi: 10.1016/0005-2736(78)90100-1. [DOI] [PubMed] [Google Scholar]
- Massaia M., Perrin L., Bianchi A., Ruedi J., Attisano C., Altieri D., Rijkers G. T., Thompson L. F. Human T cell activation. Synergy between CD73 (ecto-5'-nucleotidase) and signals delivered through CD3 and CD2 molecules. J Immunol. 1990 Sep 15;145(6):1664–1674. [PubMed] [Google Scholar]
- McNurlan M. A., Clemens M. J. Inhibition of cell proliferation by interferons. Relative contributions of changes in protein synthesis and breakdown to growth control of human lymphoblastoid cells. Biochem J. 1986 Aug 1;237(3):871–876. doi: 10.1042/bj2370871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muraguchi A., Kishimoto T., Miki Y., Kuritani T., Kaieda T., Yoshizaki K., Yamamura Y. T cell-replacing factor- (TRF) induced IgG secretion in a human B blastoid cell line and demonstration of acceptors for TRF. J Immunol. 1981 Aug;127(2):412–416. [PubMed] [Google Scholar]
- Neubauer R. H., Goldstein L., Rabin H., Stebbing N. Stimulation of in vitro immunoglobulin production by interferon-alpha. J Immunol. 1985 Jan;134(1):299–304. [PubMed] [Google Scholar]
- Nilsson K., Bennich H., Johansson S. G., Pontén J. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol. 1970 Oct;7(4):477–489. [PMC free article] [PubMed] [Google Scholar]
- Panitch H. S., Francis G. S., Hooper C. J., Merigan T. C., Johnson K. P. Serial immunological studies in multiple sclerosis patients treated systemically with human alpha interferon. Ann Neurol. 1985 Oct;18(4):434–438. doi: 10.1002/ana.410180404. [DOI] [PubMed] [Google Scholar]
- Pelton B. K., Denman A. M. Immunoregulatory effects of interferon-alpha. I. Interferon-alpha inhibits in vitro antibody synthesis by normal human lymphocytes. Clin Exp Immunol. 1985 Feb;59(2):398–404. [PMC free article] [PubMed] [Google Scholar]
- Pereira S., Webster D., Platts-Mills T. Immature B cells in fetal development and immunodeficiency: studies of IgM, IgG, IgA and IgD production in vitro using Epstein-Barr virus activation. Eur J Immunol. 1982 Jul;12(7):540–546. doi: 10.1002/eji.1830120703. [DOI] [PubMed] [Google Scholar]
- Peters M., Ambrus J. L., Zheleznyak A., Walling D., Hoofnagle J. H. Effect of interferon-alpha on immunoglobulin synthesis by human B cells. J Immunol. 1986 Nov 15;137(10):3153–3157. [PubMed] [Google Scholar]
- Quesada J. R., Alexanian R., Hawkins M., Barlogie B., Borden E., Itri L., Gutterman J. U. Treatment of multiple myeloma with recombinant alpha-interferon. Blood. 1986 Feb;67(2):275–278. [PubMed] [Google Scholar]
- Rowe M., de Gast G. C., Platts-Mills T. A., Asherson G. L., Webster A. D., Johnson S. M. Lymphocyte 5'-nucleotidase in primary hypogammaglobulinaemia and cord blood. Clin Exp Immunol. 1980 Feb;39(2):337–343. [PMC free article] [PubMed] [Google Scholar]
- Shields J. G., Smith S. H., Levinsky R. J., DeFrance T., De Vries J. E., Banchereau J., Callard R. E. The response of selected human B cell lines to B cell growth and differentiation factors. Eur J Immunol. 1987 Apr;17(4):535–540. doi: 10.1002/eji.1830170416. [DOI] [PubMed] [Google Scholar]
- Siegel D. S., Le J., Vilcek J. Modulation of lymphocyte proliferation and immunoglobulin synthesis by interferon-gamma and "type I" interferons. Cell Immunol. 1986 Sep;101(2):380–390. doi: 10.1016/0008-8749(86)90151-6. [DOI] [PubMed] [Google Scholar]
- Thompson L. F., Ruedi J. M. Functional characterization of ecto-5'-nucleotidase-positive and -negative human T lymphocytes. J Immunol. 1989 Mar 1;142(5):1518–1522. [PubMed] [Google Scholar]
- Thompson L. F., Ruedi J. M., Glass A., Low M. G., Lucas A. H. Antibodies to 5'-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol. 1989 Sep 15;143(6):1815–1821. [PubMed] [Google Scholar]
- Thompson L. F., Ruedi J. M., Low M. G., Clement L. T. Distribution of ecto-5'-nucleotidase on subsets of human T and B lymphocytes as detected by indirect immunofluorescence using goat antibodies. J Immunol. 1987 Dec 15;139(12):4042–4048. [PubMed] [Google Scholar]
- Thompson L. F., Ruedi J. M., O'Connor R. D., Bastian J. F. Ecto-5'-nucleotidase expression during human B cell development. An explanation for the heterogeneity in B lymphocyte ecto-5'-nucleotidase activity in patients with hypogammaglobulinemia. J Immunol. 1986 Oct 15;137(8):2496–2500. [PubMed] [Google Scholar]
- Thompson L. F., Ruedi J. M. Synthesis of immunoglobulin G by pokeweed mitogen- or Epstein-Barr virus-stimulated human B cells in vitro is restricted to the ecto-5'-nucleotidase positive subset. J Clin Invest. 1988 Sep;82(3):902–905. doi: 10.1172/JCI113696. [DOI] [PMC free article] [PubMed] [Google Scholar]
