Skip to main content
Immunology logoLink to Immunology
. 1992 Feb;75(2):343–348.

Evidence that interleukin-4 suppression of lymphokine-activated killer cell induction is mediated through monocytes.

B Brooks 1, H Parry 1, J Lawry 1, R Rees 1
PMCID: PMC1384717  PMID: 1551696

Abstract

Recombinant human interleukin-4 (IL-4) and transforming growth factor-beta (TGF-beta) reduce recombinant interleukin-2 (IL-2) induction of lymphokine-activated killer (LAK) cell activity from human peripheral blood mononuclear cells (PBMC). Monocytes can be removed from PBMC by adherence, leaving a peripheral blood lymphocyte population (PBL) which also responds to IL-2 to generate LAK activity. PBL generation of LAK cytotoxicity is susceptible to inhibition by TGF-beta, but not by IL-4. Readdition of purified monocytes to PBL is accompanied by return of the suppressive action of IL-4 on the generation of LAK activity. Induction of LAK cytolysis from Percoll-isolated T cells (greater than 90% CD3+) is also refractory to the inhibitory effect of IL-4. When PBMC were cultured in IL-2, with and without IL-4, subsequent sorting of CD3+ and CD3- lymphocytes by flow cytometry demonstrated that IL-4 had suppressed LAK induction in both effector populations. This suggests that, although isolated CD3+ cells are not susceptible to IL-4 suppression of IL-2 activation, they are sensitive to inhibition when part of a mixed PBMC population. Evidence is presented for the first time that this suppression is mediated via the action of IL-4 on monocytes.

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks B., Rees R. C. Human recombinant IL-4 suppresses the induction of human IL-2 induced lymphokine activated killer (LAK) activity. Clin Exp Immunol. 1988 Nov;74(2):162–165. [PMC free article] [PubMed] [Google Scholar]
  2. Crump W. L., 3rd, Owen-Schaub L. B., Grimm E. A. Synergy of human recombinant interleukin 1 with interleukin 2 in the generation of lymphokine-activated killer cells. Cancer Res. 1989 Jan 1;49(1):149–153. [PubMed] [Google Scholar]
  3. Damle N. K., Doyle L. V., Bradley E. C. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol. 1986 Nov 1;137(9):2814–2822. [PubMed] [Google Scholar]
  4. Damle N. K., Doyle L. V. Distinct regulatory effects of IL-4 and TNF-alpha during CD3-dependent and CD3-independent initiation of human T-cell activation. Lymphokine Res. 1989 Summer;8(2):85–97. [PubMed] [Google Scholar]
  5. Ebina N., Gallardo D., Shau H., Golub S. H. IL-1 and IL-4 as reciprocal regulators of IL-2 induced lymphocyte cytotoxicity. Br J Cancer. 1990 Oct;62(4):619–623. doi: 10.1038/bjc.1990.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Espevik T., Figari I. S., Ranges G. E., Palladino M. A., Jr Transforming growth factor-beta 1 (TGF-beta 1) and recombinant human tumor necrosis factor-alpha reciprocally regulate the generation of lymphokine-activated killer cell activity. Comparison between natural porcine platelet-derived TGF-beta 1 and TGF-beta 2, and recombinant human TGF-beta 1. J Immunol. 1988 Apr 1;140(7):2312–2316. [PubMed] [Google Scholar]
  7. Gallagher G., Wilcox F., al-Azzawi F. Interleukin-3 and interleukin-4 each strongly inhibit the induction and function of human LAK cells. Clin Exp Immunol. 1988 Nov;74(2):166–170. [PMC free article] [PubMed] [Google Scholar]
  8. Gibbons R., Martinez O., Matli M., Heinzel F., Bernstein M., Warren R. Recombinant IL-4 inhibits IL-6 synthesis by adherent peripheral blood cells in vitro. Lymphokine Res. 1990 Fall;9(3):283–293. [PubMed] [Google Scholar]
  9. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Han X., Itoh K., Balch C. M., Pellis N. R. Recombinant interleukin 4 (RIL4) inhibits interleukin 2-induced activation of peripheral blood lymphocytes. Lymphokine Res. 1988 Fall;7(3):227–235. [PubMed] [Google Scholar]
  11. Hart P. H., Vitti G. F., Burgess D. R., Whitty G. A., Piccoli D. S., Hamilton J. A. Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A. 1989 May;86(10):3803–3807. doi: 10.1073/pnas.86.10.3803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haskill S., Johnson C., Eierman D., Becker S., Warren K. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol. 1988 Mar 1;140(5):1690–1694. [PubMed] [Google Scholar]
  13. Hoyer M., Meineke T., Lewis W., Zwilling B., Rinehart J. Characterization and modulation of human lymphokine (interleukin 2) activated killer cell induction. Cancer Res. 1986 Jun;46(6):2834–2838. [PubMed] [Google Scholar]
  14. Ibayashi Y., Hoon D. S., Golub S. H. The regulatory effect of adherent cells on lymphokine activated killer cells. Cell Immunol. 1987 Dec;110(2):365–378. doi: 10.1016/0008-8749(87)90129-8. [DOI] [PubMed] [Google Scholar]
  15. Kawakami Y., Rosenberg S. A., Lotze M. T. Interleukin 4 promotes the growth of tumor-infiltrating lymphocytes cytotoxic for human autologous melanoma. J Exp Med. 1988 Dec 1;168(6):2183–2191. doi: 10.1084/jem.168.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leibovitz A., Stinson J. C., McCombs W. B., 3rd, McCoy C. E., Mazur K. C., Mabry N. D. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976 Dec;36(12):4562–4569. [PubMed] [Google Scholar]
  17. Lewis D. B., Prickett K. S., Larsen A., Grabstein K., Weaver M., Wilson C. B. Restricted production of interleukin 4 by activated human T cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9743–9747. doi: 10.1073/pnas.85.24.9743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ortaldo J. R. Cytotoxicity by natural killer cells: analysis of large granular lymphocytes. Methods Enzymol. 1986;132:445–457. doi: 10.1016/s0076-6879(86)32030-5. [DOI] [PubMed] [Google Scholar]
  19. Ortaldo J. R., Mason A., Overton R. Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp Med. 1986 Oct 1;164(4):1193–1205. doi: 10.1084/jem.164.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paliard X., de Waal Malefijt R., Yssel H., Blanchard D., Chrétien I., Abrams J., de Vries J., Spits H. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol. 1988 Aug 1;141(3):849–855. [PubMed] [Google Scholar]
  21. Roberts K., Lotze M. T., Rosenberg S. A. Separation and functional studies of the human lymphokine-activated killer cell. Cancer Res. 1987 Aug 15;47(16):4366–4371. [PubMed] [Google Scholar]
  22. Sawada H., Abo T., Sugawara S., Kumagai K. Prerequisite for the induction of lymphokine-activated killer cells from T lymphocytes. J Immunol. 1988 May 15;140(10):3668–3673. [PubMed] [Google Scholar]
  23. Silvennoinen O., Vakkila J., Hurme M. Accessory cells, dendritic cells, or monocytes, are required for the lymphokine-activated killer cell induction from resting T cell but not from natural killer cell precursors. J Immunol. 1988 Aug 15;141(4):1404–1409. [PubMed] [Google Scholar]
  24. Spits H., Yssel H., Paliard X., Kastelein R., Figdor C., de Vries J. E. IL-4 inhibits IL-2-mediated induction of human lymphokine-activated killer cells, but not the generation of antigen-specific cytotoxic T lymphocytes in mixed leukocyte cultures. J Immunol. 1988 Jul 1;141(1):29–36. [PubMed] [Google Scholar]
  25. Spits H., Yssel H., Takebe Y., Arai N., Yokota T., Lee F., Arai K., Banchereau J., de Vries J. E. Recombinant interleukin 4 promotes the growth of human T cells. J Immunol. 1987 Aug 15;139(4):1142–1147. [PubMed] [Google Scholar]
  26. Standiford T. J., Strieter R. M., Chensue S. W., Westwick J., Kasahara K., Kunkel S. L. IL-4 inhibits the expression of IL-8 from stimulated human monocytes. J Immunol. 1990 Sep 1;145(5):1435–1439. [PubMed] [Google Scholar]
  27. Swisher S. G., Economou J. S., Holmes E. C., Golub S. H. TNF-alpha and IFN-gamma reverse IL-4 inhibition of lymphokine-activated killer cell function. Cell Immunol. 1990 Jul;128(2):450–461. doi: 10.1016/0008-8749(90)90040-x. [DOI] [PubMed] [Google Scholar]
  28. Tiercy J. M., Jeannet M., Mach B. A new HLA-DRB1 allele within the DRw52 supertypic specificity (DRw13-DwHAG): sequencing and direct identification by oligonucleotide typing. Eur J Immunol. 1990 Feb;20(2):237–241. doi: 10.1002/eji.1830200202. [DOI] [PubMed] [Google Scholar]
  29. Toledano M., Mathiot C., Michon J., Andreu G., Lando D., Brandely M., Fridman W. H. Interferon-gamma (IFN-gamma) and interleukin-2 in the generation of lymphokine-activated killer cell cytotoxicity--IFN-gamma-induced suppressive activity. Cancer Immunol Immunother. 1989;30(1):57–64. doi: 10.1007/BF01665031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Widmer M. B., Acres R. B., Sassenfeld H. M., Grabstein K. H. Regulation of cytolytic cell populations from human peripheral blood by B cell stimulatory factor 1 (interleukin 4). J Exp Med. 1987 Nov 1;166(5):1447–1455. doi: 10.1084/jem.166.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES