Skip to main content
Immunology logoLink to Immunology
. 1992 Mar;75(3):507–512.

New monoclonal antibodies in CD59: use for the analysis of peripheral blood cells from paroxysmal nocturnal haemoglobinuria (PNH) patients and for the quantitation of CD59 on normal and decay accelerating factor (DAF)-deficient erythrocytes.

A Fletcher 1, J A Bryant 1, B Gardner 1, P A Judson 1, F A Spring 1, S F Parsons 1, G Mallinson 1, D J Anstee 1
PMCID: PMC1384747  PMID: 1374058

Abstract

CD59 is a widely expressed cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein which acts as an inhibitor of the assembly of the membrane attack complex of autologous complement. Four new monoclonal antibodies to CD59 (2/24, 1B2, BRIC 229, BRIC 257) are described. Competitive binding experiments using these antibodies, two known CD59 antibodies (MEM-43, YTH 53.1) and a previously described antibody LICR-LON-Fib75.1 demonstrated that all seven antibodies see related epitopes on human erythrocyte CD59. In common with other GPI-linked proteins, CD59 (as defined by antibody 2/24) was sensitive to treatment with phosphatidylinositol-specific phospholipase C (PI-PLC) on lymphocytes and monocytes but not on erythrocytes. Flow cytometric analysis using antibody 2/24 identified two populations (CD59 positive and CD59 deficient) of lymphocytes, monocytes and erythrocytes in peripheral blood from a patient with paroxysmal nocturnal haemoglobinuria (PNH). The abundance of CD59 on normal erythrocytes was determined as 21,000 copies/cell when radioiodinated BRIC 229 was used. Other CD59 antibodies gave values of 10,000 (IF5) and 15,000 (2/24) against the same target cells. Radioiodinated Fab fragments of BRIC 229 gave a value of 39,000 copies/cell. Erythrocytes from two individuals with a rare inherited deficiency of decay accelerating factor (DAF), known as the Inab phenotype, expressed normal levels of CD59.

Full text

PDF
507

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Advani H., Zamor J., Judd W. J., Johnson C. L., Marsh W. L. Inactivation of Kell blood group antigens by 2-aminoethylisothiouronium bromide. Br J Haematol. 1982 May;51(1):107–115. doi: 10.1111/j.1365-2141.1982.tb07295.x. [DOI] [PubMed] [Google Scholar]
  2. Anstee D. J., Gardner B., Spring F. A., Holmes C. H., Simpson K. L., Parsons S. F., Mallinson G., Yousaf S. M., Judson P. A. New monoclonal antibodies in CD44 and CD58: their use to quantify CD44 and CD58 on normal human erythrocytes and to compare the distribution of CD44 and CD58 in human tissues. Immunology. 1991 Oct;74(2):197–205. [PMC free article] [PubMed] [Google Scholar]
  3. Burroughs S. F., Devine D. V., Browne G., Kaplan M. E. The population of paroxysmal nocturnal hemoglobinuria neutrophils deficient in decay-accelerating factor is also deficient in alkaline phosphatase. Blood. 1988 Apr;71(4):1086–1089. [PubMed] [Google Scholar]
  4. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  5. Daniels G. Cromer-related antigens--blood group determinants on decay-accelerating factor. Vox Sang. 1989;56(4):205–211. doi: 10.1111/j.1423-0410.1989.tb02030.x. [DOI] [PubMed] [Google Scholar]
  6. Darby C., Chien P., Rossman M. D., Schreiber A. D. Monocyte/macrophage Fc gamma RIII, unlike Fc gamma RIII on neutrophils, is not a phosphatidylinositol-linked protein. Blood. 1990 Jun 15;75(12):2396–2400. [PubMed] [Google Scholar]
  7. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dustin M. L., Selvaraj P., Mattaliano R. J., Springer T. A. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. 1987 Oct 29-Nov 4Nature. 329(6142):846–848. doi: 10.1038/329846a0. [DOI] [PubMed] [Google Scholar]
  9. Gardner B., Parsons S. F., Merry A. H., Anstee D. J. Epitopes on sialoglycoprotein alpha: evidence for heterogeneity in the molecule. Immunology. 1989 Oct;68(2):283–289. [PMC free article] [PubMed] [Google Scholar]
  10. Hamilton K. K., Ji Z., Rollins S., Stewart B. H., Sims P. J. Regulatory control of the terminal complement proteins at the surface of human endothelial cells: neutralization of a C5b-9 inhibitor by antibody to CD59. Blood. 1990 Dec 15;76(12):2572–2577. [PubMed] [Google Scholar]
  11. Harada R., Okada N., Fujita T., Okada H. Purification of 1F5 antigen that prevents complement attack on homologous cell membranes. J Immunol. 1990 Mar 1;144(5):1823–1828. [PubMed] [Google Scholar]
  12. Holguin M. H., Wilcox L. A., Bernshaw N. J., Rosse W. F., Parker C. J. Erythrocyte membrane inhibitor of reactive lysis: effects of phosphatidylinositol-specific phospholipase C on the isolated and cell-associated protein. Blood. 1990 Jan 1;75(1):284–289. [PubMed] [Google Scholar]
  13. Huizinga T. W., van der Schoot C. E., Jost C., Klaassen R., Kleijer M., von dem Borne A. E., Roos D., Tetteroo P. A. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature. 1988 Jun 16;333(6174):667–669. doi: 10.1038/333667a0. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Low M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):427–454. doi: 10.1016/0304-4157(89)90014-2. [DOI] [PubMed] [Google Scholar]
  16. Lublin D. M., Atkinson J. P. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol. 1989;7:35–58. doi: 10.1146/annurev.iy.07.040189.000343. [DOI] [PubMed] [Google Scholar]
  17. Mallinson G., Martin P. G., Anstee D. J., Tanner M. J., Merry A. H., Tills D., Sonneborn H. H. Identification and partial characterization of the human erythrocyte membrane component(s) that express the antigens of the LW blood-group system. Biochem J. 1986 Mar 15;234(3):649–652. doi: 10.1042/bj2340649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McIlhinney R. A., Patel S. Purification of a human plasma membrane glycoprotein from human red blood cells by affinity chromatography using a monoclonal antibody. J Biol Chem. 1985 Jan 10;260(1):489–494. [PubMed] [Google Scholar]
  19. Meri S., Morgan B. P., Davies A., Daniels R. H., Olavesen M. G., Waldmann H., Lachmann P. J. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990 Sep;71(1):1–9. [PMC free article] [PubMed] [Google Scholar]
  20. Merry A. H., Rawlinson V. I., Uchikawa M., Daha M. R., Sim R. B. Studies on the sensitivity to complement-mediated lysis of erythrocytes (Inab phenotype) with a deficiency of DAF (decay accelerating factor). Br J Haematol. 1989 Oct;73(2):248–253. doi: 10.1111/j.1365-2141.1989.tb00260.x. [DOI] [PubMed] [Google Scholar]
  21. Moore S., Woodrow C. F., McClelland D. B. Isolation of membrane components associated with human red cell antigens Rh(D), (c), (E) and Fy. Nature. 1982 Feb 11;295(5849):529–531. doi: 10.1038/295529a0. [DOI] [PubMed] [Google Scholar]
  22. Okada N., Harada R., Fujita T., Okada H. Monoclonal antibodies capable of causing hemolysis of neuraminidase-treated human erythrocytes by homologous complement. J Immunol. 1989 Oct 1;143(7):2262–2266. [PubMed] [Google Scholar]
  23. Parsons S. F., Judson P. A., Anstee D. J. BRIC 18: a monoclonal antibody with a specificity related to the kell blood group system. J Immunogenet. 1982 Dec;9(6):377–380. doi: 10.1111/j.1744-313x.1982.tb00998.x. [DOI] [PubMed] [Google Scholar]
  24. Plesner T., Hansen N. E., Carlsen K. Estimation of PI-bound proteins on blood cells from PNH patients by quantitative flow cytometry. Br J Haematol. 1990 Aug;75(4):585–590. doi: 10.1111/j.1365-2141.1990.tb07803.x. [DOI] [PubMed] [Google Scholar]
  25. Reid M. E., Mallinson G., Sim R. B., Poole J., Pausch V., Merry A. H., Liew Y. W., Tanner M. J. Biochemical studies on red blood cells from a patient with the Inab phenotype (decay-accelerating factor deficiency). Blood. 1991 Dec 15;78(12):3291–3297. [PubMed] [Google Scholar]
  26. Roberts W. L., Myher J. J., Kuksis A., Low M. G., Rosenberry T. L. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J Biol Chem. 1988 Dec 15;263(35):18766–18775. [PubMed] [Google Scholar]
  27. Rollins S. A., Sims P. J. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990 May 1;144(9):3478–3483. [PubMed] [Google Scholar]
  28. Selvaraj P., Carpén O., Hibbs M. L., Springer T. A. Natural killer cell and granulocyte Fc gamma receptor III (CD16) differ in membrane anchor and signal transduction. J Immunol. 1989 Nov 15;143(10):3283–3288. [PubMed] [Google Scholar]
  29. Spring F. A., Judson P. A., Daniels G. L., Parsons S. F., Mallinson G., Anstee D. J. A human cell-surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets. Immunology. 1987 Oct;62(2):307–313. [PMC free article] [PubMed] [Google Scholar]
  30. Stefanová I., Hilgert I., Kristofová H., Brown R., Low M. G., Horejsí V. Characterization of a broadly expressed human leucocyte surface antigen MEM-43 anchored in membrane through phosphatidylinositol. Mol Immunol. 1989 Feb;26(2):153–161. doi: 10.1016/0161-5890(89)90097-7. [DOI] [PubMed] [Google Scholar]
  31. Tanner M. J., Anstee D. J., Mallinson G., Ridgwell K., Martin P. G., Avent N. D., Parsons S. F. Effect of endoglycosidase F-peptidyl N-glycosidase F preparations on the surface components of the human erythrocyte. Carbohydr Res. 1988 Jul 15;178:203–212. doi: 10.1016/0008-6215(88)80112-5. [DOI] [PubMed] [Google Scholar]
  32. Tate C. G., Uchikawa M., Tanner M. J., Judson P. A., Parsons S. F., Mallinson G., Anstee D. J. Studies on the defect which causes absence of decay accelerating factor (DAF) from the peripheral blood cells of an individual with the Inab phenotype. Biochem J. 1989 Jul 15;261(2):489–493. doi: 10.1042/bj2610489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Telen M. J., Green A. M. The Inab phenotype: characterization of the membrane protein and complement regulatory defect. Blood. 1989 Jul;74(1):437–441. [PubMed] [Google Scholar]
  34. Tokunaga E., Sasakawa S., Tamaka K., Kawamata H., Giles C. M., Ikin E. W., Poole J., Anstee D. J., Mawby W., Tanner M. J. Two apparently healthy Japanese individuals of type MkMk have erythrocytes which lack both the blood group MN and Ss-active sialoglycoproteins. J Immunogenet. 1979 Dec;6(6):383–390. doi: 10.1111/j.1744-313x.1979.tb00693.x. [DOI] [PubMed] [Google Scholar]
  35. Yamashina M., Ueda E., Kinoshita T., Takami T., Ojima A., Ono H., Tanaka H., Kondo N., Orii T., Okada N. Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1990 Oct 25;323(17):1184–1189. doi: 10.1056/NEJM199010253231707. [DOI] [PubMed] [Google Scholar]
  36. van der Schoot C. E., Huizinga T. W., van 't Veer-Korthof E. T., Wijmans R., Pinkster J., von dem Borne A. E. Deficiency of glycosyl-phosphatidylinositol-linked membrane glycoproteins of leukocytes in paroxysmal nocturnal hemoglobinuria, description of a new diagnostic cytofluorometric assay. Blood. 1990 Nov 1;76(9):1853–1859. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES