Skip to main content
Immunology logoLink to Immunology
. 1992 Apr;75(4):646–651.

The role of T cells in pathogenesis and protective immunity to murine malaria.

S Waki 1, S Uehara 1, K Kanbe 1, K Ono 1, M Suzuki 1, H Nariuchi 1
PMCID: PMC1384844  PMID: 1350570

Abstract

T-cell-mediated immunity to a virulent strain of Plasmodium berghei NK65 (Pb NK65) and to an attenuated derivative (Pb XAT) of the strain were examined in CBA mice by the administration of monoclonal antibodies against T-cell subsets or interferon-gamma (IFN-gamma). The injection of anti-CD8+ or anti-IFN-gamma delayed the mortality of mice infected with Pb NK65, although it did not affect the parasitaemia. In the late stage of PB NK65 infection, T cells, especially CD8+ T cells, were increased in number in the liver at the expense of splenic CD8+ T cells. These CD8+ T cells released IFN-gamma in culture without antigen stimulation and were thought to induce tumour necrosis factor-alpha (TNF-alpha) production by the cells in the liver. In mice infected with Pb XAT, or mice primed with Pb XAT and then challenged with Pb NK65, CD4+ T cells had a crucial role in preventing parasite growth and in protective immunity. IFN-gamma was again the key molecule in protective immunity. These results suggest that T cells stimulated with malaria antigen play important roles both in protective immunity and pathogenesis depending upon their subsets; CD8+ T cells in pathogenesis, and CD4+ T cells in protective immunity. These apparently contradictory responses may be mediated by the same cytokine, IFN-gamma.

Full text

PDF
646

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bate C. A., Taverne J., Playfair J. H. Soluble malarial antigens are toxic and induce the production of tumour necrosis factor in vivo. Immunology. 1989 Apr;66(4):600–605. [PMC free article] [PubMed] [Google Scholar]
  2. Cherwinski H. M., Schumacher J. H., Brown K. D., Mosmann T. R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987 Nov 1;166(5):1229–1244. doi: 10.1084/jem.166.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark I. A., Allison A. C. Babesia microti and Plasmodium berghei yoelii infections in nude mice. Nature. 1974 Nov 22;252(5481):328–329. doi: 10.1038/252328a0. [DOI] [PubMed] [Google Scholar]
  4. Clark I. A. Cell-mediated immunity in protection and pathology of malaria. Parasitol Today. 1987 Oct;3(10):300–305. doi: 10.1016/0169-4758(87)90187-6. [DOI] [PubMed] [Google Scholar]
  5. Clark I. A., Cowden W. B., Butcher G. A., Hunt N. H. Possible roles of tumor necrosis factor in the pathology of malaria. Am J Pathol. 1987 Oct;129(1):192–199. [PMC free article] [PubMed] [Google Scholar]
  6. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature. 1984 Dec 6;312(5994):548–551. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  7. Collart M. A., Belin D., Vassalli J. D., de Kossodo S., Vassalli P. Gamma interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J Exp Med. 1986 Dec 1;164(6):2113–2118. doi: 10.1084/jem.164.6.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grau G. E., Heremans H., Piguet P. F., Pointaire P., Lambert P. H., Billiau A., Vassalli P. Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5572–5574. doi: 10.1073/pnas.86.14.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grau G. E., Piguet P. F., Engers H. D., Louis J. A., Vassalli P., Lambert P. H. L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J Immunol. 1986 Oct 1;137(7):2348–2354. [PubMed] [Google Scholar]
  10. Jayawardena A. N., Targett G. A., Carter R. L., Leuchars E., Davies A. J. The immunological response of CBA mice to P. yoelii. I. General characteristics, the effects of T-cell deprivation and reconstitution with thymus grafts. Immunology. 1977 Jun;32(6):849–859. [PMC free article] [PubMed] [Google Scholar]
  11. Langhorne J., Simon-Haarhaus B., Meding S. J. The role of CD4+ T cells in the protective immune response to Plasmodium chabaudi in vivo. Immunol Lett. 1990 Aug;25(1-3):101–107. doi: 10.1016/0165-2478(90)90099-c. [DOI] [PubMed] [Google Scholar]
  12. Meding S. J., Cheng S. C., Simon-Haarhaus B., Langhorne J. Role of gamma interferon during infection with Plasmodium chabaudi chabaudi. Infect Immun. 1990 Nov;58(11):3671–3678. doi: 10.1128/iai.58.11.3671-3678.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mitchell G. H. An update on candidate malaria vaccines. Parasitology. 1989;98 (Suppl):S29–S47. doi: 10.1017/s0031182000072231. [DOI] [PubMed] [Google Scholar]
  14. Ohara J., Paul W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature. 1985 May 23;315(6017):333–336. doi: 10.1038/315333a0. [DOI] [PubMed] [Google Scholar]
  15. Schofield L., Villaquiran J., Ferreira A., Schellekens H., Nussenzweig R., Nussenzweig V. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature. 1987 Dec 17;330(6149):664–666. doi: 10.1038/330664a0. [DOI] [PubMed] [Google Scholar]
  16. Sheagren J. N., Monaco A. P. Protective Effect of Antilymphocyte Serum on Mice Infected with Plasmodium berghei. Science. 1969 Jun 20;164(3886):1423–1425. doi: 10.1126/science.164.3886.1423. [DOI] [PubMed] [Google Scholar]
  17. Süss G., Eichmann K., Kury E., Linke A., Langhorne J. Roles of CD4- and CD8-bearing T lymphocytes in the immune response to the erythrocytic stages of Plasmodium chabaudi. Infect Immun. 1988 Dec;56(12):3081–3088. doi: 10.1128/iai.56.12.3081-3088.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taverne J., Matthews N., Depledge P., Playfair J. H. Malarial parasites and tumour cells are killed by the same component of tumour necrosis serum. Clin Exp Immunol. 1984 Aug;57(2):293–300. [PMC free article] [PubMed] [Google Scholar]
  19. Waki S., Takagi T., Suzuki M. Acquirement of protective immunity in mice through infection with an attenuated isolate and its failure in parent virulent Plasmodium berghei. Parasitol Res. 1989;75(8):614–618. doi: 10.1007/BF00930958. [DOI] [PubMed] [Google Scholar]
  20. Waki S., Tamura J., Imanaka M., Ishikawa S., Suzuki M. Plasmodium berghei: isolation and maintenance of an irradiation attenuated strain in the nude mouse. Exp Parasitol. 1982 Jun;53(3):335–340. doi: 10.1016/0014-4894(82)90076-5. [DOI] [PubMed] [Google Scholar]
  21. Weidanz W. P., Long C. A. The role of T cells in immunity to malaria. Prog Allergy. 1988;41:215–252. [PubMed] [Google Scholar]
  22. Weiss W. R., Sedegah M., Beaudoin R. L., Miller L. H., Good M. F. CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A. 1988 Jan;85(2):573–576. doi: 10.1073/pnas.85.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES