Abstract
The effects of 15-deoxyspergualin (DSG), an immunosuppressive agent, on host resistance against Listeria monocytogenes were studied in mice. Administration of DSG in the early phase of infection resulted in fatal listeriosis by preventing acquired anti-listerial resistance, even though the infectious dose was sublethal for the untreated controls. In contrast, DSG treatment started after development of the acquired immunity was ineffective. Endogenous production of interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) in the bloodstreams induced by the infection was normal in DSG-treated mice. Nevertheless, augmentation of macrophage functions such as expression of major histocompatibility complex (MHC) class II antigens, phagocytic activity and listericidal activity induced by the infection was abrogated by DSG treatment. These results suggest that the inhibitory effect of DSG on anti-listerial resistance might be different from cyclosporine A (CsA).
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bancroft G. J., Schreiber R. D., Bosma G. C., Bosma M. J., Unanue E. R. A T cell-independent mechanism of macrophage activation by interferon-gamma. J Immunol. 1987 Aug 15;139(4):1104–1107. [PubMed] [Google Scholar]
- Bancroft G. J., Sheehan K. C., Schreiber R. D., Unanue E. R. Tumor necrosis factor is involved in the T cell-independent pathway of macrophage activation in scid mice. J Immunol. 1989 Jul 1;143(1):127–130. [PubMed] [Google Scholar]
- Buchmeier N. A., Schreiber R. D. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7404–7408. doi: 10.1073/pnas.82.21.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheers C., Hill M., Haigh A. M., Stanley E. R. Stimulation of macrophage phagocytic but not bactericidal activity by colony-stimulating factor 1. Infect Immun. 1989 May;57(5):1512–1516. doi: 10.1128/iai.57.5.1512-1516.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curry R. C., Kiener P. A., Spitalny G. L. A sensitive immunochemical assay for biologically active MuIFN-gamma. J Immunol Methods. 1987 Nov 23;104(1-2):137–142. doi: 10.1016/0022-1759(87)90497-2. [DOI] [PubMed] [Google Scholar]
- Davies W. A. Kinetics of killing Listeria monocytogenes by macrophages: correlation of 3H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model. J Reticuloendothel Soc. 1982 Dec;32(6):461–476. [PubMed] [Google Scholar]
- Dickneite G., Schorlemmer H. U., Sedlacek H. H., Falk W., Ulrichs K., Müller-Ruchholtz W. Suppression of macrophage function and prolongation of graft survival by the new guanidinic-like structure, 15-deoxyspergualin. Transplant Proc. 1987 Feb;19(1 Pt 2):1301–1304. [PubMed] [Google Scholar]
- Espevik T., Figari I. S., Shalaby M. R., Lackides G. A., Lewis G. D., Shepard H. M., Palladino M. A., Jr Inhibition of cytokine production by cyclosporin A and transforming growth factor beta. J Exp Med. 1987 Aug 1;166(2):571–576. doi: 10.1084/jem.166.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
- Havell E. A. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol. 1989 Nov 1;143(9):2894–2899. [PubMed] [Google Scholar]
- Havell E. A. Production of tumor necrosis factor during murine listeriosis. J Immunol. 1987 Dec 15;139(12):4225–4231. [PubMed] [Google Scholar]
- Iwasawa H., Kondo S., Ikeda D., Takeuchi T., Umezawa H. Synthesis of (-)-15-deoxyspergualin and (-)-spergualin-15-phosphate. J Antibiot (Tokyo) 1982 Dec;35(12):1665–1669. doi: 10.7164/antibiotics.35.1665. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H. Possible role of helper and cytolytic T lymphocytes in antibacterial defense: conclusions based on a murine model of listeriosis. Rev Infect Dis. 1987 Sep-Oct;9 (Suppl 5):S650–S659. doi: 10.1093/clinids/9.supplement_5.s650. [DOI] [PubMed] [Google Scholar]
- Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakane A., Minagawa T., Kato K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun. 1988 Oct;56(10):2563–2569. doi: 10.1128/iai.56.10.2563-2569.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakane A., Minagawa T., Kohanawa M., Chen Y., Sato H., Moriyama M., Tsuruoka N. Interactions between endogenous gamma interferon and tumor necrosis factor in host resistance against primary and secondary Listeria monocytogenes infections. Infect Immun. 1989 Nov;57(11):3331–3337. doi: 10.1128/iai.57.11.3331-3337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakane A., Minagawa T., Yasuda I., Yu C., Kato K. Prevention by gamma interferon of fatal infection with Listeria monocytogenes in mice treated with cyclosporin A. Infect Immun. 1988 Aug;56(8):2011–2015. doi: 10.1128/iai.56.8.2011-2015.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakane A., Numata A., Asano M., Kohanawa M., Chen Y., Minagawa T. Evidence that endogenous gamma interferon is produced early in Listeria monocytogenes infection. Infect Immun. 1990 Jul;58(7):2386–2388. doi: 10.1128/iai.58.7.2386-2388.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemoto K., Abe F., Nakamura T., Ishizuka M., Takeuchi T., Umezawa H. Blastogenic responses and the release of interleukins 1 and 2 by spleen cells obtained from rat skin allograft recipients administered with 15-deoxyspergualin. J Antibiot (Tokyo) 1987 Jul;40(7):1062–1064. doi: 10.7164/antibiotics.40.1062. [DOI] [PubMed] [Google Scholar]
- Nemoto K., Hayashi M., Abe F., Nakamura T., Ishizuka M., Umezawa H. Immunosuppressive activities of 15-deoxyspergualin in animals. J Antibiot (Tokyo) 1987 Apr;40(4):561–562. doi: 10.7164/antibiotics.40.561. [DOI] [PubMed] [Google Scholar]
- Nemoto K., Hayashi M., Sugawara Y., Ito J., Abe F., Takita T., Nakamura T., Takeuchi T. Biological activities of deoxyspergualin in autoimmune disease mice. J Antibiot (Tokyo) 1988 Sep;41(9):1253–1259. doi: 10.7164/antibiotics.41.1253. [DOI] [PubMed] [Google Scholar]
- Ochiai T., Hori S., Nakajima K., Nagata M., Asano T., Isono K., Umezawa H. Prolongation of rat heart allograft survival by 15-deoxyspergualin. J Antibiot (Tokyo) 1987 Feb;40(2):249–250. doi: 10.7164/antibiotics.40.249. [DOI] [PubMed] [Google Scholar]
- Ogasawara K., Iwabuchi K., Kobayashi S., Ishikawa N., Ikeda H., Natori T., Ogasawara M., Geng L., Good R. A., Onoé K. An epitope on class II antigens that is maintained across species barriers and important in immunologic functions. Transplantation. 1987 Mar;43(3):427–432. doi: 10.1097/00007890-198703000-00021. [DOI] [PubMed] [Google Scholar]
- Shevach E. M. The effects of cyclosporin A on the immune system. Annu Rev Immunol. 1985;3:397–423. doi: 10.1146/annurev.iy.03.040185.002145. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Kanashiro M., Amemiya H. Effect of a new immunosuppressant, 15-deoxyspergualin, on heterotopic rat heart transplantation, in comparison with cyclosporine. Transplantation. 1987 Oct;44(4):483–487. doi: 10.1097/00007890-198710000-00005. [DOI] [PubMed] [Google Scholar]
- Umezawa H., Ishizuka M., Takeuchi T., Abe F., Nemoto K., Shibuya K., Nakamura T. Suppression of tissue graft rejection by spergualin. J Antibiot (Tokyo) 1985 Feb;38(2):283–284. doi: 10.7164/antibiotics.38.283. [DOI] [PubMed] [Google Scholar]
- Umezawa H., Kondo S., Iinuma H., Kunimoto S., Ikeda Y., Iwasawa H., Ikeda D., Takeuchi T. Structure of an antitumor antibiotic, spergualin. J Antibiot (Tokyo) 1981 Dec;34(12):1622–1624. doi: 10.7164/antibiotics.34.1622. [DOI] [PubMed] [Google Scholar]
