Skip to main content
Immunology logoLink to Immunology
. 1988 Aug;64(4):643–648.

Induction of suppressor cells by staphylococcal enterotoxin B: identification of a suppressor cell circuit in the generation of suppressor-effector cells.

M Holly 1, Y S Lin 1, T J Rogers 1
PMCID: PMC1384985  PMID: 2971607

Abstract

We have shown previously that staphylococcal enterotoxin B (SEB) has the capacity to non-specifically inhibit antibody responses in vitro through the induction of a suppressor cell population. In the present studies, an analysis of the cellular dynamics has shown that the generation of Lyt-1-2+ suppressor-effector cells is dependent on the initial activation by SEB of an Lyt-1+2- suppressor-inducer population. Co-culture experiments carried out in vitro suggest that the induction of the suppressor-effector population requires at least two signals: one signal is provided by the suppressor-inducer population, and the second signal is provided by SEB. Studies also show that the in vitro antibody response is suppressed when the suppressor cells are added as late as Day 4 of a 5-day culture. While the suppressor cell population activated early in the antibody response is Lyt-1-2+, depletion studies suggest that the population that acts late in an ongoing response bears the Lyt-1+2+ surface phenotype. The results demonstrate that at least three distinct SEB-induced T-cell populations are capable of participating in the suppression of the antibody response. The relationship between the generation of non-specific suppressor cells and the activation of antigen-specific cell circuits is discussed.

Full text

PDF
643

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano Y., Hodes R. J. T cell regulation of B cell activation: antigen-specific and antigen-nonspecific suppressor pathways are mediated by distinct T cell subpopulations. J Immunol. 1983 Mar;130(3):1061–1065. [PubMed] [Google Scholar]
  2. Asherson G. L., Colizzi V., Zembala M. An overview of T-suppressor cell circuits. Annu Rev Immunol. 1986;4:37–68. doi: 10.1146/annurev.iy.04.040186.000345. [DOI] [PubMed] [Google Scholar]
  3. Aune T. M., Pierce C. W. Conversion of soluble immune response suppressor to macrophage-derived suppressor factor by peroxide. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5099–5103. doi: 10.1073/pnas.78.8.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aune T. M., Pierce C. W. Mechanism of action of macrophage-derived suppressor factor produced by soluble immune response suppressor-treated macrophages. J Immunol. 1981 Jul;127(1):368–372. [PubMed] [Google Scholar]
  5. Aune T. M., Webb D. R., Pierce C. W. Purification and initial characterization of the lymphokine soluble immune response suppressor. J Immunol. 1983 Dec;131(6):2848–2852. [PubMed] [Google Scholar]
  6. Bach B. A., Sherman L., Benacerraf B., Greene M. I. Mechanisms of regulation of cell-mediated immunity. II. Induction and suppression of delayed-type hypersensitivity to azobenzenearsonate-coupled syngeneic cells. J Immunol. 1978 Oct;121(4):1460–1468. [PubMed] [Google Scholar]
  7. Beckwith M., Rich S. S. Suppressor-target interaction in alloantigen induced responses: induction of a second cell in the suppressive pathway. J Immunol. 1982 Feb;128(2):791–796. [PubMed] [Google Scholar]
  8. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  9. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  10. Donnelly R. P., Rogers T. J. Immunosuppression induced by staphylococcal enterotoxin B. Cell Immunol. 1982 Sep 1;72(1):166–177. doi: 10.1016/0008-8749(82)90294-5. [DOI] [PubMed] [Google Scholar]
  11. Dorf M. E., Benacerraf B. Suppressor cells and immunoregulation. Annu Rev Immunol. 1984;2:127–157. doi: 10.1146/annurev.iy.02.040184.001015. [DOI] [PubMed] [Google Scholar]
  12. Eardley D. D., Hugenberger J., McVay-Boudreau L., Shen F. W., Gershon R. K., Cantor H. Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition. J Exp Med. 1978 Apr 1;147(4):1106–1115. doi: 10.1084/jem.147.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Germain R. N., Theze J., Waltenbaugh C., Dorf M. E., Benacerraf B. Antigen-specific T cell-mediated suppression. II. In vitro induction by I-J-coded L-glutamic acid50-L-tyrosine50 (GT)-specific T cell suppressor factor (GT-T8F) of suppressor T cells (T82) bearing distinct I-J determinants. J Immunol. 1978 Aug;121(2):602–607. [PubMed] [Google Scholar]
  14. Greene M. I., Ratnofsky S., Takaoki M., Sy M. S., Burakoff S., Finberg R. W. Antigen-specific suppression of cytotoxic T cell responses: an idiotype-bearing factor regulates the cytotoxic T cell response to azobenzenearsonate-coupled cells. J Immunol. 1982 Mar;128(3):1188–1191. [PubMed] [Google Scholar]
  15. Irons R. D., Pfeifer R. W., Aune T. M., Pierce C. W. Soluble immune response suppressor (SIRS) inhibits microtubule function in vivo and microtubule assembly in vitro. J Immunol. 1984 Oct;133(4):2032–2036. [PubMed] [Google Scholar]
  16. Kappler J. W. A micro-technique for hemolytic plaque assays. J Immunol. 1974 Mar;112(3):1271–1274. [PubMed] [Google Scholar]
  17. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  18. Malkovský M., Asherson G. L., Chandler P., Colizzi V., Watkins M. C., Zembala M. Nonspecific inhibitor of DNA synthesis elaborated by T acceptor cells. I. Specific hapten- and I-J-driven liberation of an inhibitor of cell proliferation by Lyt-1-2+ cyclophosphamide-sensitive T acceptor cells armed with a product of Lyt-1+2+-specific suppressor cells. J Immunol. 1983 Feb;130(2):785–790. [PubMed] [Google Scholar]
  19. Ptak W., Rosenstein R. W., Gershon R. K. Interactions between molecules (subfactors) released by different T cell sets that yield a complete factor with biological (suppressive) activity. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2375–2378. doi: 10.1073/pnas.79.7.2375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sherr D. H., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. IX. Characterization of Idiotype-specific effector-phase suppressor cells on plaque-forming cell responses in vitro. J Exp Med. 1981 Jun 1;153(6):1445–1456. doi: 10.1084/jem.153.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sunday M. E., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. VIII. Suppressor cell pathways in cutaneous sensitivity responses. J Exp Med. 1981 Apr 1;153(4):811–822. doi: 10.1084/jem.153.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sy M. S., Lee S. H., Tsurufuji M., Rock K. L., Benacerraf B., Finberg R. Two distinct mechanisms regulate the in vivo generation of cytotoxic T cells. J Exp Med. 1982 Sep 1;156(3):918–923. doi: 10.1084/jem.156.3.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sy M. S., Miller S. D., Moorhead J. W., Claman H. N. Active suppression of 1-fluoro-2,4-dinitrobenzene-immune T cells. Requirement of an auxiliary T cell induced by antigen. J Exp Med. 1979 May 1;149(5):1197–1207. doi: 10.1084/jem.149.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tittle T. V., Rittenberg M. B. Expression of IgG memory response in vitro to thymus-dependent and thymus-independent antigens. Cell Immunol. 1978 Jan;35(1):180–190. doi: 10.1016/0008-8749(78)90138-7. [DOI] [PubMed] [Google Scholar]
  25. Weinberger J. Z., Germain R. N., Ju S. T., Greene M. I., Benacerraf B., Dorf M. E. Hapten-specific T-cell responses to 4-hydroxy-3-nitrophenyl acetyl. II. Demonstration of idiotypic determinants on suppressor T cells. J Exp Med. 1979 Oct 1;150(4):761–776. doi: 10.1084/jem.150.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zembala M. A., Asherson G. L., James B. M., Stein V. E., Watkins M. C. Anti-haptene T suppressor factor acts through an I-J+, Ly1-2+, T acceptor cell that releases a nonspecific inhibitor of the transfer of contact sensitivity when exposed to antigen. J Immunol. 1982 Nov;129(5):1823–1829. [PubMed] [Google Scholar]
  27. Zembala M., Romano G. C., Colizzi V., Little J. A., Asherson G. L. Nonspecific T suppressor factor (nsTsF) cascade in contact sensitivity: nsTsF-1 causes an Ly-1+2- I-A+ immune T cell to produce a second, genetically restricted, nsTsF-2. J Immunol. 1986 Aug 15;137(4):1138–1143. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES