Skip to main content
Immunology logoLink to Immunology
. 1988 Aug;64(4):649–654.

Limiting-dilution analysis of T cells extracted from solid human lung tissue: comparison of precursor frequencies for proliferative responses and lymphokine production between lung and blood T cells from individual donors.

P G Holt 1, U R Kees 1, M A Shon-Hegrad 1, A Rose 1, J Ford 1, N Bilyk 1, R Bowman 1, B W Robinson 1
PMCID: PMC1384986  PMID: 3262574

Abstract

This study evaluates the frequency and functions of immunocompetent T cells at the clonal level in solid human lung tissue versus peripheral blood. Enzymatic digestion of slices of histologically normal human lung yielded 18-42 x 10(6) viable mononuclear cells per gram wet weight tissue, of which 60-72% were lymphocytes; based upon these recoveries and the known weight of adult lung, the (median) lung parenchymal lymphocyte population can be estimated as 6 x 10(9), being of the same order as the blood pool and 15-30-fold that recoverable by broncho-alveolar lavage. Flow cytometric analysis indicated that the bulk of these lymphocytes was OKT3+/T11+ (CD3/CD2) T cells. Purified blood and lung T cells from each subject were cultured at limiting dilution in the presence of PHA, irradiated feeder cells and recombinant human IL-2. The mean frequency estimates for PHA-responsive T cells in these populations were 1 in 1.23 (81%) and 1 in 3.22 (31%) for blood and lung, respectively. This difference was seen for T cells from each donor and was highly significant by paired t-test (P less than 0.002). Analysis of surface phenotypes and functions of individual blood and T-cell clones indicated comparable frequencies for OKT4 (CD4) and OKT8 (CD8) expression, TNF production and mitogen-induced cytotoxicity. However, a striking inverse relationship was observed between the overall frequency of IL-2-producing clones (79% for blood versus 47% for lung) and interferon-gamma (IFN-gamma)-producing clones (46% versus 87%). These differences were found for each subject, and both were highly significant (P less than 0.001) by paired t-test. The available literature suggests that the majority of these lung T cells represent transient immigrants derived from the blood. Accordingly, the functional differences we have observed suggest either selective trapping within the lung vascular bed of peripheral blood T cells of certain functional phenotypes or alternatively selection/modulation of T cells by lung-derived factors during their transit through the tissue.

Full text

PDF
649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevilacqua M. P., Pober J. S., Wheeler M. E., Cotran R. S., Gimbrone M. A., Jr Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest. 1985 Nov;76(5):2003–2011. doi: 10.1172/JCI112200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butcher E. C. The regulation of lymphocyte traffic. Curr Top Microbiol Immunol. 1986;128:85–122. doi: 10.1007/978-3-642-71272-2_3. [DOI] [PubMed] [Google Scholar]
  3. Carroll A. M., Palladino M. A., Oettgen H., De Sousa M. In vivo localization of cloned IL-2-dependent T cells. Cell Immunol. 1983 Feb 15;76(1):69–80. doi: 10.1016/0008-8749(83)90349-0. [DOI] [PubMed] [Google Scholar]
  4. Crapo J. D., Barry B. E., Gehr P., Bachofen M., Weibel E. R. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982 Aug;126(2):332–337. doi: 10.1164/arrd.1982.126.2.332. [DOI] [PubMed] [Google Scholar]
  5. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract (first of two parts). N Engl J Med. 1984 Jan 19;310(3):154–166. doi: 10.1056/NEJM198401193100304. [DOI] [PubMed] [Google Scholar]
  6. Davidson B. L., Faust J., Pessano S., Daniele R. P., Rovera G. Differentiation and activation phenotypes of lung T lymphocytes differ from those of circulating T lymphocytes. J Clin Invest. 1985 Jul;76(1):60–65. doi: 10.1172/JCI111977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dillon S. B., MacDonald T. T. Functional characterization of Con A-responsive Lyt2-positive mouse small intestinal intraepithelial lymphocytes. Immunology. 1986 Nov;59(3):389–396. [PMC free article] [PubMed] [Google Scholar]
  8. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  9. Holt G. H., Turner K. J., Holt B. J. In vitro synthesis of IgE by human peripheral blood leucocytes. II modulation of IgE B cell activity by isotype-specific regulatory T cells. Clin Exp Immunol. 1981 Sep;45(3):523–531. [PMC free article] [PubMed] [Google Scholar]
  10. Holt P. G., Degebrodt A., O'Leary C., Krska K., Plozza T. T cell activation by antigen-presenting cells from lung tissue digests: suppression by endogenous macrophages. Clin Exp Immunol. 1985 Dec;62(3):586–593. [PMC free article] [PubMed] [Google Scholar]
  11. Holt P. G., Degebrodt A., Venaille T., O'Leary C., Krska K., Flexman J., Farrell H., Shellam G., Young P., Penhale J. Preparation of interstitial lung cells by enzymatic digestion of tissue slices: preliminary characterization by morphology and performance in functional assays. Immunology. 1985 Jan;54(1):139–147. [PMC free article] [PubMed] [Google Scholar]
  12. Holt P. G. Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol. 1986 Feb;63(2):261–270. [PMC free article] [PubMed] [Google Scholar]
  13. Holt P. G., Robinson B. W., Reid M., Kees U. R., Warton A., Dawson V. H., Rose A., Schon-Hegrad M., Papadimitriou J. M. Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure. Clin Exp Immunol. 1986 Oct;66(1):188–200. [PMC free article] [PubMed] [Google Scholar]
  14. Holt P. G., Schon-Hegrad M. A. Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: implications for immune function studies. Immunology. 1987 Nov;62(3):349–356. [PMC free article] [PubMed] [Google Scholar]
  15. Holt P. G., Schon-Hegrad M. A., Oliver J. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations. J Exp Med. 1988 Feb 1;167(2):262–274. doi: 10.1084/jem.167.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunninghake G. W., Gadek J. E., Kawanami O., Ferrans V. J., Crystal R. G. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage. Am J Pathol. 1979 Oct;97(1):149–206. [PMC free article] [PubMed] [Google Scholar]
  17. Hunninghake G. W., Kawanami O., Ferrans V. J., Young R. C., Jr, Roberts W. C., Crystal R. G. Characterization of the inflammatory and immune effector cells in the lung parenchyma of patients with interstitial lung disease. Am Rev Respir Dis. 1981 Apr;123(4 Pt 1):407–412. doi: 10.1164/arrd.1981.123.4.407. [DOI] [PubMed] [Google Scholar]
  18. Kees U., Kynast G., Weber E., Krammer P. H. A method for testing the specificity of influenza A virus-reactive memory cytotoxic T lymphocyte (CTL) clones in limiting dilution cultures. J Immunol Methods. 1984 Apr 27;69(2):215–227. doi: 10.1016/0022-1759(84)90320-x. [DOI] [PubMed] [Google Scholar]
  19. Kung P. C., Talle M. A., DeMaria M., Ziminski N., Look R., Lifter J., Goldstein G. Creating a useful panel of anti-T cell monoclonal antibodies. Int J Immunopharmacol. 1981;3(3):175–181. doi: 10.1016/0192-0561(81)90010-2. [DOI] [PubMed] [Google Scholar]
  20. Lecossier D., Valeyre D., Loiseau A., Battesti J. P., Soler P., Hance A. J. T-lymphocytes recovered by bronchoalveolar lavage from normal subjects and patients with sarcoidosis are refractory to proliferative signals. Am Rev Respir Dis. 1988 Mar;137(3):592–599. doi: 10.1164/ajrccm/137.3.592. [DOI] [PubMed] [Google Scholar]
  21. Mackaness G. B. The J. Burns Amberson LECTURE The induction and expression of cell-mediated hypersensitivity in the lung. Am Rev Respir Dis. 1971 Dec;104(6):813–828. doi: 10.1164/arrd.1971.104.6.813. [DOI] [PubMed] [Google Scholar]
  22. Moretta A., Pantaleo G., Moretta L., Cerottini J. C., Mingari M. C. Direct demonstration of the clonogenic potential of every human peripheral blood T cell. Clonal analysis of HLA-DR expression and cytolytic activity. J Exp Med. 1983 Feb 1;157(2):743–754. doi: 10.1084/jem.157.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pober J. S., Bevilacqua M. P., Mendrick D. L., Lapierre L. A., Fiers W., Gimbrone M. A., Jr Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol. 1986 Mar 1;136(5):1680–1687. [PubMed] [Google Scholar]
  24. Reynolds H. Y., Newball H. H. Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med. 1974 Oct;84(4):559–573. [PubMed] [Google Scholar]
  25. Robinson B. W., McLemore T. L., Crystal R. G. Gamma interferon is spontaneously released by alveolar macrophages and lung T lymphocytes in patients with pulmonary sarcoidosis. J Clin Invest. 1985 May;75(5):1488–1495. doi: 10.1172/JCI111852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rosenberg S. A., Grimm E. A., McGrogan M., Doyle M., Kawasaki E., Koths K., Mark D. F. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science. 1984 Mar 30;223(4643):1412–1414. doi: 10.1126/science.6367046. [DOI] [PubMed] [Google Scholar]
  27. Semenzato G., Chilosi M., Ossi E., Trentin L., Pizzolo G., Cipriani A., Agostini C., Zambello R., Marcer G., Gasparotto G. Bronchoalveolar lavage and lung histology. Comparative analysis of inflammatory and immunocompetent cells in patients with sarcoidosis and hypersensitivity pneumonitis. Am Rev Respir Dis. 1985 Aug;132(2):400–404. doi: 10.1164/arrd.1985.132.2.400. [DOI] [PubMed] [Google Scholar]
  28. Uchiyama T., Broder S., Waldmann T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol. 1981 Apr;126(4):1393–1397. [PubMed] [Google Scholar]
  29. WEISBERGER A. S., GUYTON R. A., HEINLE R. W., STORAASLI J. P. The role of the lungs in the removal of transfused lymphocytes. Blood. 1951 Oct;6(10):916–925. [PubMed] [Google Scholar]
  30. Wang A., Lu S. D., Mark D. F. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science. 1984 Jun 29;224(4656):1431–1433. doi: 10.1126/science.6427925. [DOI] [PubMed] [Google Scholar]
  31. Warner L. A., Holt P. G., Mayrhofer G. Alveolar macrophages. VI. Regulation of alveolar macrophage-mediated suppression of lymphocyte proliferation by a putative T cell. Immunology. 1981 Jan;42(1):137–147. [PMC free article] [PubMed] [Google Scholar]
  32. van oud Alblas A. B., van Furth R. Origin, Kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med. 1979 Jun 1;149(6):1504–1518. doi: 10.1084/jem.149.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES