Skip to main content
Immunology logoLink to Immunology
. 1989 Feb;66(2):238–245.

Cellular basis of an auto-anti-allotypic mechanism for the maintenance of chronic allotype suppression in the rabbit.

L T Adler 1, E Claassen 1
PMCID: PMC1385094  PMID: 2925224

Abstract

Immunocytochemical identification of antibody-forming cells (AFCs) in situ was used to test the hypothesis that the maintenance of chronic allotype suppression in heterozygous rabbits is the result of an autoimmune B-cell-mediated response. Appreciable numbers of B cells with antibody activity directed against the suppressed allotypic determinant were found in spleen and bone marrow sections of all chronically suppressed rabbits examined. Appropriate double-staining was used to determine that such cells were of the non-suppressed allotype. These cells were indistinguishable from anti-allotypic AFCs found in larger numbers in spleens of normal heterozygous rabbits that had been immunized against a heterologous allotypic determinant. Auto-anti-allotypic AFCs were not found in suppressed rabbits less than 8 week old, nor were they found in normal (non-suppressed) heterozygous rabbits or chimeric rabbits formed by the injection of histocompatible but allotype-mismatched lymphoid cells at birth. The findings reported here support the hypothesis that the long-term maintenance of allotype suppression in the rabbit may result from the suppressive activities of autoimmune B cells. It is suggested that the suppression of an allotype during the first few weeks of life could result in a loss of tolerance to a self-determinant. The kinetics of auto-anti-AFC production support this idea in showing that such cells are generated following the decline of the antibody used to induce suppression. The triggering event may be the emergence of B cells expressing the previously suppressed gene product.

Full text

PDF
238

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdi H. B., Simons M. A., Young-Cooper G. O., Mage R. G. Expression of kappa chain allotypes at the cell surface and in serum immunoglobulins of normal and allotype-suppressed heterozygous rabbits. Immunology. 1982 Jul;46(3):661–669. [PMC free article] [PubMed] [Google Scholar]
  2. Adler F. L., Adler L. T. Consequences of prenatal exposure to maternal alloantigens. Ann N Y Acad Sci. 1982;392:266–275. doi: 10.1111/j.1749-6632.1982.tb36112.x. [DOI] [PubMed] [Google Scholar]
  3. Adler F. L., Adler L. T. Passive hemagglutination and hemolysis for estimation of antigens and antibodies. Methods Enzymol. 1980;70(A):455–466. doi: 10.1016/s0076-6879(80)70069-1. [DOI] [PubMed] [Google Scholar]
  4. Adler F. L., Noelle R. J. Enduring antibody responses in "normal" rabbits to maternal immunoglobulin allotypes. J Immunol. 1975 Sep;115(3):620–625. [PubMed] [Google Scholar]
  5. Adler L. T., Adler F. L. Allotype suppression in the rabbit: persistence of passive antibody and the establishment or abrogation of chronic suppression. Cell Immunol. 1980 Sep 15;55(1):124–135. doi: 10.1016/0008-8749(80)90143-4. [DOI] [PubMed] [Google Scholar]
  6. Adler L. T., Adler F. L., Cohen C., Tissot R. G. Induction of lymphoid cell chimerism in noninbred, histocompatible rabbits. A new model for studying allotype suppression in the rabbit. J Exp Med. 1981 Oct 1;154(4):1085–1099. doi: 10.1084/jem.154.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Adler L. T. Effect on synthetic capacity of antibodies directed against receptors of allotype-bearing rabbit cells. Immunol Commun. 1976;5(4):223–242. doi: 10.3109/08820137609044278. [DOI] [PubMed] [Google Scholar]
  8. Adler L. T., Rehg J. E., Cohen C., LeBeau M. M. Graft-versus-host reactions and abrogation of allotype suppression following histoincompatible lymphoid cell transfers in rabbits. Transplantation. 1984 Jun;37(6):606–611. doi: 10.1097/00007890-198406000-00016. [DOI] [PubMed] [Google Scholar]
  9. Benner R., Hijmans W., Haaijman J. J. The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin Exp Immunol. 1981 Oct;46(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  10. Binion S. B., Rodkey L. S. Naturally induced auto-anit-idiotypic antibodies. Induction by identical idiotopes in some members of an outbred rabbit family. J Exp Med. 1982 Sep 1;156(3):860–872. doi: 10.1084/jem.156.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bosma M. J., Bosma G. C. Prevention of IgG2a production as a result of allotype-specific interaction between T and B cells. J Exp Med. 1977 Mar 1;145(3):743–748. doi: 10.1084/jem.145.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Claassen E., Adler L. T., Adler F. L. Double immunocytochemical staining for the in situ study of allotype distribution during an anti-trinitrophenyl immune response in chimeric rabbits. J Histochem Cytochem. 1986 Aug;34(8):989–994. doi: 10.1177/34.8.2426338. [DOI] [PubMed] [Google Scholar]
  13. Claassen E., Adler L. T. Sequential double immunocytochemical staining for in situ identification of an auto-anti-allotype immune response in allotype-suppressed rabbits. J Histochem Cytochem. 1988 Dec;36(12):1455–1461. doi: 10.1177/36.12.3057069. [DOI] [PubMed] [Google Scholar]
  14. DRAY S. Effect of maternal isoantibodies on the quantitative expression of two allelic genes controlling gamma-globulin allotypic specificities. Nature. 1962 Aug 18;195:677–680. doi: 10.1038/195677a0. [DOI] [PubMed] [Google Scholar]
  15. Dray S., Gilman-Sachs A., Horng W. J. Auto-anti-allotype antibody in allotype-suppressed rabbits: immunoregulation of immunoglobulin synthesis by an allotype-idiotype network. Ann N Y Acad Sci. 1983;418:84–96. doi: 10.1111/j.1749-6632.1983.tb18057.x. [DOI] [PubMed] [Google Scholar]
  16. Elfenbein G. J., Harrison M. R., Mage R. G. Appearance of lymphocyte surface markers and functional responses in neonatal and young rabbit spleens. Cell Immunol. 1975 Feb;15(2):303–311. doi: 10.1016/0008-8749(75)90009-x. [DOI] [PubMed] [Google Scholar]
  17. GRAHAM R. C., Jr, LUNDHOLM U., KARNOVSKY M. J. CYTOCHEMICAL DEMONSTRATION OF PEROXIDASE ACTIVITY WITH 3-AMINO-9-ETHYLCARBAZOLE. J Histochem Cytochem. 1965 Feb;13:150–152. doi: 10.1177/13.2.150. [DOI] [PubMed] [Google Scholar]
  18. Harrison M. R., Mage R. G. Allotype suppression in the rabbit. I. The ontogeny of cells bearing immunoglobulin of paternal allotype and the fate of these cells after treatment with antiallotype antisera. J Exp Med. 1973 Oct 1;138(4):764–774. doi: 10.1084/jem.138.4.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harrison M. R., Mage R. G., Davie J. M. Deletion of b5 immunoglobulin-bearing lymphocytes in allotype-suppressed rabbits. J Exp Med. 1973 Feb 1;137(2):254–264. doi: 10.1084/jem.137.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herzenberg L. A., Chan E. L., Ravitch M. M., Riblet R. J., Herzenberg L. A. Active suppression of immunoglobulin allotype synthesis. 3. Identification of T cells as responsible for suppression by cells from spleen, thymus, lymph node, and bone marrow. J Exp Med. 1973 Jun 1;137(6):1311–1324. doi: 10.1084/jem.137.6.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Horng W. J., Gilman-Sachs A., Dray S. Induction of auto anti-a2 VH or anti-b4 kappa allotype antibodies in a2- or b4-suppressed a2a2 or b4b4 homozygous rabbits: a new method for inducing allotype-suppressed homozygous litters. J Immunol. 1980 Sep;125(3):1250–1255. [PubMed] [Google Scholar]
  22. Inoue T., Adler L. T. Selective suppressive effects of anti-allotype antibodies on spleen cells of adult rabbits. Cell Immunol. 1982 Jan 15;66(2):277–288. doi: 10.1016/0008-8749(82)90179-4. [DOI] [PubMed] [Google Scholar]
  23. Inoue T., Adler L. T., Yamada A., Adler F. L. Comparative suppressive effects of anti-allotype antibodies on spleen cells of immature and adult rabbits. Cell Immunol. 1982 Jan 15;66(2):289–299. doi: 10.1016/0008-8749(82)90180-0. [DOI] [PubMed] [Google Scholar]
  24. Jackson S., Mestecky J. Presence of plasma cells binding autologous antibody during an immune response. J Exp Med. 1979 Nov 1;150(5):1265–1270. doi: 10.1084/jem.150.5.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lowe J. A., Catty D. Humoral and cellular aspects of immunoglobulin allotype suppression in the rabbit. IV. Kinetics of induction. Immunology. 1976 Mar;30(3):335–340. [PMC free article] [PubMed] [Google Scholar]
  26. Lowe J. A., Cross L. M., Catty D. Humoral and cellular aspects of immunoglobulin allotype suppression in the rabbit. I. Kinetics of neutralization of suppression. Immunology. 1973 Sep;25(3):367–375. [PMC free article] [PubMed] [Google Scholar]
  27. Lowe J. A., Cross L. M., Catty D. Humoral and cellular aspects of immunologlobulin allotype suppression in the rabbit. III. Production of anti-allotypic antibody by suppressed animals. Immunology. 1975 Mar;28(3):469–478. [PMC free article] [PubMed] [Google Scholar]
  28. Mage R. G. Altered quantitative expression of immunoglobulin allotypes in rabbits. Curr Top Microbiol Immunol. 1974;63:131–152. doi: 10.1007/978-3-642-65775-7_4. [DOI] [PubMed] [Google Scholar]
  29. Ohama Y., Adler L. T., Saito K. Impaired lymphocyte functions in heterozygous rabbits recovering from neonatal allotype suppression. Cell Immunol. 1985 Feb;90(2):416–425. doi: 10.1016/0008-8749(85)90206-0. [DOI] [PubMed] [Google Scholar]
  30. Ohama Y., Adler L. T. Suppression of rabbit lymphocyte functions by antibodies specific for allotypic membrane determinants. Cell Immunol. 1984 Jul;86(2):429–438. doi: 10.1016/0008-8749(84)90398-8. [DOI] [PubMed] [Google Scholar]
  31. Peri B. A., Theodore C. M., Losonsky G. A., Fishaut J. M., Rothberg R. M., Ogra P. L. Antibody content of rabbit milk and serum following inhalation or ingestion of respiratory syncytial virus and bovine serum albumin. Clin Exp Immunol. 1982 Apr;48(1):91–101. [PMC free article] [PubMed] [Google Scholar]
  32. Ratcliffe M. J., Ivanyi J. Allotype suppression in the chicken. I. Generation of chronic suppression in heterozygous but not in homozygous chickens. Eur J Immunol. 1979 Nov;9(11):847–852. doi: 10.1002/eji.1830091104. [DOI] [PubMed] [Google Scholar]
  33. Rodkey L. S., Adler F. L. Regulation of natural antiallotype antibody responses by idiotype network-induced auto-antiidiotypic antibodies. J Exp Med. 1983 Jun 1;157(6):1920–1931. doi: 10.1084/jem.157.6.1920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saito K., Adler L. T. Selective suppression of allotype expression induced in vitro: maintenance of suppression following adoptive transfer. Cell Immunol. 1986 Apr 15;99(1):209–219. doi: 10.1016/0008-8749(86)90229-7. [DOI] [PubMed] [Google Scholar]
  35. Simons M. A., Hayward A. R., Gathings W. E., Lawton A. R., Young-Cooper G. O., Cooper M. D., Mage R. G. Expression of b 4 and b 5 chi light chain allotypes by B and pre-B cells in allotype-suppressed and neutralized b4b5 rabbits. Eur J Immunol. 1979 Nov;9(11):887–891. doi: 10.1002/eji.1830091110. [DOI] [PubMed] [Google Scholar]
  36. Yamada A., Adler L. T., Adler F. L. A role for clonal dominance in the maintenance of allotype suppression? J Exp Med. 1979 Oct 1;150(4):888–897. doi: 10.1084/jem.150.4.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yarmush M. L., Sogn J. A., Kern P. D., Kindt T. J. Role of immune recognition in latent allotype induction and clearance. Evidence for an allotypic network. J Exp Med. 1981 Jan 1;153(1):196–206. doi: 10.1084/jem.153.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES