Skip to main content
Immunology logoLink to Immunology
. 1989 Mar;66(3):459–465.

Binding of monoclonal antibody to CD16 causes calcium mobilization in large granular lymphocytes but inhibits NK killing.

E A Macintyre 1, D W Wallace 1, K O'Flynn 1, R Abdul-Gaffar 1, P A Tetteroo 1, G Morgan 1, D C Linch 1
PMCID: PMC1385237  PMID: 2564843

Abstract

A monoclonal antibody (mAb), CLB/FcR gran I, reactive with the CD16 Fc receptor (FcRlo/FcRIII) of human cells, leads to calcium mobilization in large granular lymphocytes (LGL) but not in granulocytes. Identical responses are obtained with F(ab')2 fragments of this antibody, indicating that the response is independent of Fc-FcR binding, and that bivalent cross-linking of this receptor is adequate for optimal calcium mobilization. The calcium response was greater in CD3- LGL compared to CD3+ LGL, although the response was augmented in the latter cells by prior rosetting with sheep red blood cells (SRBC). Calcium mobilization in CD3- LGL induced by CLB/FcR gran I is associated with inhibition of natural killer cell (NK) killing, and inhibition of the enhanced NK killing induced by the anti-CD2 low-density monoclonal antibody, 9.1. This supports the view that the NK-enhancing activity of 9.1 is due to simultaneous binding to CD2 and CD16, and may in fact be transduced through the CD16 molecule. The variable reported effects of anti-CD16 antibodies on NK killing are likely to reflect the epitope bound rather than the isotype of antibody used, since F(ab')2 fragments of CLB/FcR gran I also inhibit NK killing.

Full text

PDF
459

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault K. A., Weiner H. L. Natural killing of measles-infected cells by human lymphocytes. J Immunol. 1979 Jun;122(6):2611–2616. [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  3. Catovsky D., Linch D. C., Beverley P. C. T cell disorders in haematological diseases. Clin Haematol. 1982 Oct;11(3):661–695. [PubMed] [Google Scholar]
  4. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  5. Hünig T., Tiefenthaler G., Meyer zum Büschenfelde K. H., Meuer S. C. Alternative pathway activation of T cells by binding of CD2 to its cell-surface ligand. Nature. 1987 Mar 19;326(6110):298–301. doi: 10.1038/326298a0. [DOI] [PubMed] [Google Scholar]
  6. Jondal M., Kullman C., Alter M. B., Ljunggren K. Natural killer and T-cell potentiation by monoclonal IgG against natural killer cell FcR(IgG) or the T3 complex. Scand J Immunol. 1986 Jun;23(6):639–645. doi: 10.1111/j.1365-3083.1986.tb01999.x. [DOI] [PubMed] [Google Scholar]
  7. June C. H., Ledbetter J. A., Rabinovitch P. S., Martin P. J., Beatty P. G., Hansen J. A. Distinct patterns of transmembrane calcium flux and intracellular calcium mobilization after differentiation antigen cluster 2 (E rosette receptor) or 3 (T3) stimulation of human lymphocytes. J Clin Invest. 1986 Apr;77(4):1224–1232. doi: 10.1172/JCI112425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kipps T. J., Parham P., Punt J., Herzenberg L. A. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J Exp Med. 1985 Jan 1;161(1):1–17. doi: 10.1084/jem.161.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kulczycki A., Jr Human neutrophils and eosinophils have structurally distinct Fc gamma receptors. J Immunol. 1984 Aug;133(2):849–854. [PubMed] [Google Scholar]
  10. Linch D. C., Beverley P. C., Levinsky R. J., Rodeck C. H. Phenotypic analysis of fetal blood leucocytes: potential for prenatal diagnosis of immunodeficiency disorders. Prenat Diagn. 1982 Jul;2(3):211–218. doi: 10.1002/pd.1970020310. [DOI] [PubMed] [Google Scholar]
  11. Loiseau P., Divine M., Le Paslier D., Marolleau J. P., Farcet J. P., Flandrin G., Cohen D., Degos L., Sigaux F., Reyes F. Phenotypic and genotypic heterogeneity in large granular lymphocyte expansion. Leukemia. 1987 Mar;1(3):205–209. [PubMed] [Google Scholar]
  12. Macintyre E. A., Tatham P. E., Abdul-Gaffar R., Linch D. C. The effects of pertussis toxin on human T lymphocytes. Immunology. 1988 Jul;64(3):427–432. [PMC free article] [PubMed] [Google Scholar]
  13. Merrill J. E., Ullberg M., Jondal M. Influence of IgG and IgM receptor triggering on human natural killer cell cytotoxicity measured on the level of the single effector cell. Eur J Immunol. 1981 Jul;11(7):536–541. doi: 10.1002/eji.1830110703. [DOI] [PubMed] [Google Scholar]
  14. O'Flynn K., Knott L. J., Russul-Saib M., Abdul-Gaffar R., Morgan G., Beverley P. C., Linch D. C. CD2 and CD3 antigens mobilize Ca2+ independently. Eur J Immunol. 1986 May;16(5):580–584. doi: 10.1002/eji.1830160521. [DOI] [PubMed] [Google Scholar]
  15. Perussia B., Trinchieri G. Antibody 3G8, specific for the human neutrophil Fc receptor, reacts with natural killer cells. J Immunol. 1984 Mar;132(3):1410–1415. [PubMed] [Google Scholar]
  16. Perussia B., Trinchieri G., Jackson A., Warner N. L., Faust J., Rumpold H., Kraft D., Lanier L. L. The Fc receptor for IgG on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J Immunol. 1984 Jul;133(1):180–189. [PubMed] [Google Scholar]
  17. Selvaraj P., Plunkett M. L., Dustin M., Sanders M. E., Shaw S., Springer T. A. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. 1987 Mar 26-Apr 1Nature. 326(6111):400–403. doi: 10.1038/326400a0. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES