Skip to main content
Immunology logoLink to Immunology
. 1989 May;67(1):56–61.

CD2 and other surface molecules in the regulation of non-MHC-restricted cytolytic function.

W C Chan 1, G Ye 1, S Link 1, A C Mawle 1, J K Nicholson 1
PMCID: PMC1385288  PMID: 2567703

Abstract

The effect of anti-CD2 and Fc receptor binding molecules on the cytolytic function of a highly enriched population of CD3- large granular lymphocytes (LGL) was studied. These cells could mediate natural killer (NK) activity, antibody-dependent cellular cytotoxicity (ADCC) and lectin-dependent cellular cytotoxicity (LDCC). Both ADCC and LDCC were enhanced by anti-CD2. The enhanced LDCC could also be observed with IL-2-activated LGL. However, NK cell activity was usually slightly diminished or unaffected by anti-CD2 binding. Immune complex and aggregated human IgG had no effect on ADCC but an anti-CD16 showed a dose-dependent inhibition of ADCC, reversible by anti-HLA-ABC and anti-CD2. Cross-linking of LGL surface-bound anti-CD2 caused an almost complete inhibition of LDCC and ADCC but had much less effect on NK activity. These experiments show that ADCC and LDCC mediated by CD3- LGL can be influenced by perturbing the CD2 molecule. NK activity was, however, affected differently, suggesting some basic differences in the pathway of ADCC and NK function.

Full text

PDF
56

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anasetti C., Martin P. J., June C. H., Hellstrom K. E., Ledbetter J. A., Rabinovitch P. S., Morishita Y., Hellstrom I., Hansen J. A. Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fc-receptor (CD16). J Immunol. 1987 Sep 15;139(6):1772–1779. [PubMed] [Google Scholar]
  2. Biddison W. E., Sharrow S. O., Shearer G. M. T cell subpopulations required for the human cytotoxic T lymphocyte response to influenza virus: evidence for T cell help. J Immunol. 1981 Aug;127(2):487–491. [PubMed] [Google Scholar]
  3. Bolhuis R. L., Roozemond R. C., van de Griend R. J. Induction and blocking of cytolysis in CD2+, CD3- NK and CD2+, CD3+ cytotoxic T lymphocytes via CD2 50 KD sheep erythrocyte receptor. J Immunol. 1986 Jun 1;136(11):3939–3944. [PubMed] [Google Scholar]
  4. Bonavida B., Robins A., Saxon A. Lectin-dependent cellular cytotoxicity in man. Transplantation. 1977 Mar;23(3):261–270. doi: 10.1097/00007890-197703000-00009. [DOI] [PubMed] [Google Scholar]
  5. Brottier P., Boumsell L., Gelin C., Bernard A. T cell activation via CD2 [T, gp50] molecules: accessory cells are required to trigger T cell activation via CD2-D66 plus CD2-9.6/T11(1) epitopes. J Immunol. 1985 Sep;135(3):1624–1631. [PubMed] [Google Scholar]
  6. Chan W. C., Link S., Mawle A., Check I., Brynes R. K., Winton E. F. Heterogeneity of large granular lymphocyte proliferations: delineation of two major subtypes. Blood. 1986 Nov;68(5):1142–1153. [PubMed] [Google Scholar]
  7. Dickler H. B. Lymphocyte binding of aggregated immunoglobulin. Scand J Immunol. 1976 Jun;Suppl 5:91–97. doi: 10.1111/j.1365-3083.1976.tb03860.x. [DOI] [PubMed] [Google Scholar]
  8. Fox D. A., Hussey R. E., Fitzgerald K. A., Bensussan A., Daley J. F., Schlossman S. F., Reinherz E. L. Activation of human thymocytes via the 50KD T11 sheep erythrocyte binding protein induces the expression of interleukin 2 receptors on both T3+ and T3- populations. J Immunol. 1985 Jan;134(1):330–335. [PubMed] [Google Scholar]
  9. Krensky A. M., Sanchez-Madrid F., Robbins E., Nagy J. A., Springer T. A., Burakoff S. J. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J Immunol. 1983 Aug;131(2):611–616. [PubMed] [Google Scholar]
  10. Lanier L. L., Cwirla S., Phillips J. H. Genomic organization of T cell gamma genes in human peripheral blood natural killer cells. J Immunol. 1986 Dec 1;137(11):3375–3377. [PubMed] [Google Scholar]
  11. Lanier L. L., Le A. M., Civin C. I., Loken M. R., Phillips J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986 Jun 15;136(12):4480–4486. [PubMed] [Google Scholar]
  12. Lanier L. L., Phillips J. H., Hackett J., Jr, Tutt M., Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986 Nov 1;137(9):2735–2739. [PubMed] [Google Scholar]
  13. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  14. Phillips J. H., Lanier L. L. Lectin-dependent and anti-CD3 induced cytotoxicity are preferentially mediated by peripheral blood cytotoxic T lymphocytes expressing Leu-7 antigen. J Immunol. 1986 Mar 1;136(5):1579–1585. [PubMed] [Google Scholar]
  15. Reem G. H., Carding S., Reinherz E. L. Lymphokine synthesis is induced in human thymocytes by activation of the CD 2 (T11) pathway. J Immunol. 1987 Jul 1;139(1):130–134. [PubMed] [Google Scholar]
  16. Schmidt R. E., Hercend T., Fox D. A., Bensussan A., Bartley G., Daley J. F., Schlossman S. F., Reinherz E. L., Ritz J. The role of interleukin 2 and T11 E rosette antigen in activation and proliferation of human NK clones. J Immunol. 1985 Jul;135(1):672–678. [PubMed] [Google Scholar]
  17. Scott C. F., Jr, Lambert J. M., Kalish R. S., Morimoto C., Schlossman S. F. Human T cells can be directed to lyse tumor targets through the alternative activation/T11-E rosette receptor pathway. J Immunol. 1988 Jan 1;140(1):8–14. [PubMed] [Google Scholar]
  18. Siliciano R. F., Pratt J. C., Schmidt R. E., Ritz J., Reinherz E. L. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature. 1985 Oct 3;317(6036):428–430. doi: 10.1038/317428a0. [DOI] [PubMed] [Google Scholar]
  19. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  20. Thurlow P. J., McArthur G., McKenzie I. F. Investigation of T and natural killer cell function with monoclonal antibodies. Transplantation. 1986 Jan;41(1):104–111. doi: 10.1097/00007890-198601000-00021. [DOI] [PubMed] [Google Scholar]
  21. Trinchieri G., Perussia B. Human natural killer cells: biologic and pathologic aspects. Lab Invest. 1984 May;50(5):489–513. [PubMed] [Google Scholar]
  22. WIGZELL H. QUANTITATIVE TITRATIONS OF MOUSE H-2 ANTIBODIES USING CR-51-LABELLED TARGET CELLS. Transplantation. 1965 May;3:423–431. doi: 10.1097/00007890-196505000-00011. [DOI] [PubMed] [Google Scholar]
  23. Young H. A., Ortaldo J. R., Herberman R. B., Reynolds C. W. Analysis of T cell receptors in highly purified rat and human large granular lymphocytes (LGL): lack of functional 1.3 kb beta-chain mRNA. J Immunol. 1986 Apr 1;136(7):2701–2704. [PubMed] [Google Scholar]
  24. van de Griend R. J., Bolhuis R. L., Stoter G., Roozemond R. C. Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. J Immunol. 1987 May 15;138(10):3137–3144. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES