Skip to main content
Immunology logoLink to Immunology
. 1990 Feb;69(2):323–328.

Location of membrane-bound hapten with different length spacers.

K Kimura 1, Y Arata 1, T Yasuda 1, K Kinosita 1, M Nakanishi 1
PMCID: PMC1385609  PMID: 2307487

Abstract

Immunogenic activity of a lipid hapten is strongly dependent of the length and nature of the linker chain (spacer) connecting the hapten to the head group of the lipid. A derivative containing a very short or a long spacer is known to be less effective for antibody binding than that of an intermediate length. In the present experiment, this was confirmed first by experiments of antibody binding to TNP lipid haptens with different length of spacers and of antibody-dependent macrophage binding to them. Second, we determined the location of the TNP haptens in lipid bilayer membranes by fluorescence energy transfer. It was found that vertical distances between TNP groups (acceptors), which were assumed to be randomly distributed in a plan parallel to the membrane surface, and a pyrene fluorophore (donor), which was embedded in the middle of lipid membranes, were 10.2-10.5 A in the DMPC membranes and 13.2-13.9 A in the DPPC membranes. The vertical distances were about 3 A longer in the DPPC membranes than in the DMPC membranes. However, they were almost independent of the length of spacers. This indicates that TNP residues of the lipid haptens locate at the similar vertical position on the membrane surfaces even if they have different length spacers. From these results we suggested that the affinity of the spacer groups to the bilayer surfaces can modulate the binding affinity of antibody to lipid hapten on the membrane surfaces. This was partly supported by the binding experiments of TNP spacers to the bilayer membranes.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balakrishnan K., Mehdi S. Q., McConnell H. M. Availability of dinitrophenylated lipid haptens for specific antibody binding depends on the physical properties of host bilayer membranes. J Biol Chem. 1982 Jun 10;257(11):6434–6439. [PubMed] [Google Scholar]
  2. Batzri S., Korn E. D. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973 Apr 16;298(4):1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
  3. Brûlet P., McConnell H. M. Structural and dynamical aspects of membrane immunochemistry using model membranes. Biochemistry. 1977 Mar 22;16(6):1209–1217. doi: 10.1021/bi00625a028. [DOI] [PubMed] [Google Scholar]
  4. Dancey G. F., Isakson P. C., Kinsky S. C. Immunogenicity of liposomal model membranes sensitized with dinitrophenylated phosphatidylethanolamine derivatives containing different length spacers. J Immunol. 1979 Feb;122(2):638–642. [PubMed] [Google Scholar]
  5. Galla H. J., Hartmann W., Theilen U., Sackmann E. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. J Membr Biol. 1979 Jul 31;48(3):215–236. doi: 10.1007/BF01872892. [DOI] [PubMed] [Google Scholar]
  6. Hafeman D. G., von Tscharner V., McConnell H. M. Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4552–4556. doi: 10.1073/pnas.78.7.4552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hart M. J., Kimura K., Nakanishi M. Selected positions of acyl chains are affected differently by antibody binding which results in decreased membrane fluidity. FEBS Lett. 1985 Oct 14;190(2):249–252. doi: 10.1016/0014-5793(85)81293-x. [DOI] [PubMed] [Google Scholar]
  8. Ho R. J., Huang L. Interactions of antigen-sensitized liposomes with immobilized antibody: a homogeneous solid-phase immunoliposome assay. J Immunol. 1985 Jun;134(6):4035–4040. [PubMed] [Google Scholar]
  9. Kimura K., Nakanishi M. Subclass-specific antibody-dependent binding of macrophages to supported planar lipid monolayer membranes. FEBS Lett. 1985 Jul 22;187(1):69–72. doi: 10.1016/0014-5793(85)81216-3. [DOI] [PubMed] [Google Scholar]
  10. Kimura K., Nakanishi M., Ueda M., Ueno J., Nariuchi H., Furukawa S., Yasuda T. The effect of immunoglobulin G1 structure on macrophage binding to supported planar lipid monolayers. Immunology. 1986 Oct;59(2):235–238. [PMC free article] [PubMed] [Google Scholar]
  11. Kinosita K., Jr, Kataoka R., Kimura Y., Gotoh O., Ikegami A. Dynamic structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene: a nanosecond fluorescence depolarization study. Biochemistry. 1981 Jul 21;20(15):4270–4277. doi: 10.1021/bi00518a006. [DOI] [PubMed] [Google Scholar]
  12. Kleinfeld A. M., Lukacovic M. F. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry. 1985 Apr 9;24(8):1883–1890. doi: 10.1021/bi00329a012. [DOI] [PubMed] [Google Scholar]
  13. Kometani T., Kinosita K., Furuno T., Kouyama T., Ikegami A. Transmembrane location of retinal in purple membrane: fluorescence energy transfer in maximally packed donor-acceptor systems. Biophys J. 1987 Oct;52(4):509–517. doi: 10.1016/s0006-3495(87)83240-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kremer J. M., Esker M. W., Pathmamanoharan C., Wiersema P. H. Vesicles of variable diameter prepared by a modified injection method. Biochemistry. 1977 Aug 23;16(17):3932–3935. doi: 10.1021/bi00636a033. [DOI] [PubMed] [Google Scholar]
  15. Okada N., Yasuda T., Tsumita T., Okada H. Activation of the alternative complement pathway of guinea-gip by liposomes incorporated with trinitrophenylated phosphatidylethanolamine. Immunology. 1982 Jan;45(1):115–124. [PMC free article] [PubMed] [Google Scholar]
  16. Six H. R., Uemura K. I., Kinsky S. C. Effect of immunoglobulin class and affinity on the initiation of complement-dependent damage to liposomal model membranes sensitized with dinitrophenylated phospholipids. Biochemistry. 1973 Sep 25;12(20):4003–4011. doi: 10.1021/bi00744a034. [DOI] [PubMed] [Google Scholar]
  17. Six H. R., Young W. W., Jr, Uemura K., Kinsky S. C. Effect of antibody-complement on multiple vs. single compartment liposomes. Application of a fluorometric assay for following changes in liposomal permeability. Biochemistry. 1974 Sep 10;13(19):4050–4058. doi: 10.1021/bi00716a037. [DOI] [PubMed] [Google Scholar]
  18. Stanton S. G., Kantor A. B., Petrossian A., Owicki J. C. Location and dynamics of a membrane-bound fluorescent hapten. A spectroscopic study. Biochim Biophys Acta. 1984 Oct 3;776(2):228–236. doi: 10.1016/0005-2736(84)90212-8. [DOI] [PubMed] [Google Scholar]
  19. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
  20. Thomas D. D., Carlsen W. F., Stryer L. Fluorescence energy transfer in the rapid-diffusion limit. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5746–5750. doi: 10.1073/pnas.75.12.5746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vanderkooi J. M., Callis J. B. Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry. 1974 Sep 10;13(19):4000–4006. doi: 10.1021/bi00716a028. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES